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Two Projects, Two Journeys

Fast Matrix Multiplication

@ A Simple and Famous Algorithm:
Every student knows the O(n®) version, but a
lower bound proof exists, and we are nowhere near
it with practical algoritms

@ Fundamental Operation in Computation:
It is a core building block in numerous algorithms
across scientific computing, engineering, and data
science

@ Impact on Other Algorithms:
Faster matrix multiplication improves the
performance of many higher-level algorithms,
including those in graph theory and numerical
linear algebra.
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Scientific Simulations

Accelerating Discovery:

Scientific computations allow researchers to
simulate, model, and analyze complex phenomena
without relying solely on physical experiments,
which can be costly or impractical.

Handling Massive Datasets:

Modern scientific research often involves massive

datasets, which require significant computational

power to process, analyze, and extract meaningful
insights.

Tensor Decompositions Help:

These uncover patterns on the data without
requiring the whole dataset to be stored in
memory, but rather a small representation of it.
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What Is A Tensor?
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What Is A Tensor?

® A multilinear map of type V""" x (V")” - R
® A multilinear map of type V" x (V*)” — V¥ x (V*)t
© A smooth section of a vector bundle formed by

objects of the first option's type

® A smooth section of a vector bundle formed by
objects of the second option's type

® An element of a tensor product of vector spaces
® A multidimensional array
© An object that transforms like a tensor

Other

Figure: Question #45 of the Math Conventions Survey [1]
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Multidimensional Arrays

Figure: Tensors of orders One, Two, and Three
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(a) Vector x € R" is a 1-way (b) Matrix X € R™*" is a 2-way

tensor tensor
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Multidimensional Arrays

Figure: Tensors of orders One, Two, and Three

v

nH m X m X

> —
1 n n

(a) Vector x € R" is a 1-way (b) Matrix X € R™*" is a 2-way (c) Tensor X € R™*"*P is a 3-way

tensor tensor tensor
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Multidimensional Arrays Cont.

(a) A 4D Tensor (b) A 5D Tensor

XeRnIXn2Xn3Xn4 XeRnIXn2Xn3Xn4Xn5

Figure: Tensors of orders four and five
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(b) Lateral Slices X(:, j, :) (c) Frontal Slices X(:, :, k)

(a) Horizontal Slices X(i,:,:)

Figure: Two-way slices of a 3-way tensor
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(a) Column Fibers x.jx (b) Row Fibers x;.x (c) Tube Fibers x;;.

Figure: Fibers of a 3-way tensor
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Tensor Unfoldings - Mode 1

Figure: Unfoldings of a 3-way tensor

(a) Mode 1 Fibers (b) Mode 1 Unfolding X1
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Vector-Vector Products

Vector Inner Products
Vector Outer Products

c = (a,bj=a’beR
C=aob=abT € R™"

by
— : aiby -+ aib a
= [31 e ap } : 101 10n 1
by : = [ b1 -+ by ]
n ambi1 -+ ambn am
= albl Cij = a;bj
i=1
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Matrix-Matrix Products

Let A, B € R™". Matrix Multiplication A - B = C can be visualized as

J J
1 1
[ ] =
A B
- 111 H L1 H Il
- J
Y
n
- : . P
Each entry of C is an inner product between corresponding o
Cij = Z a,-kbkj
rows of A and columns of B —
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Tensor-Matrix Multiplication (TTM) - Tensor Format

S

Y ERM™P A RIXM

X € RmMxXnxp

Figure: Tensor form TTM: the first row of A and first mode-1 fiber of X' are emphasized with arrows.
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Tensor-Matrix Multiplication (TTM) - Matrix Format

Y(l) € RIxnp A € RIxm

X(1) € R™<"

Figure: Matrix Form TTM: Multiplying tensor X’ with matrix A in the 15* mode is the same as
multiplying as the matrix-matrix product of A and X(y).
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Searching for Fast Matrix Multiplication Algorithms with Cyclic

Invariance using CP Decompositions

WAKE FOREST

UNIVERSITY

Department of Computer Science and Department of Mathematics

Jodo Pinheiro, Grey Ballard, Frank Moore, Pratyush Mishra
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A 2 by 2 example of Matrix Multiplication

Consider a simple example of 2 by 2 matrices

[ air a } [ bi1 b1z ] _ [ aribir + aobor  ai1biz + azb ]
a1l a» by1 by as1b11 + axobo1  ax1biz + axboo

| a1l a2
01 2
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A 2 by 2 example of Matrix Multiplication

Consider a simple example of 2 by 2 matrices

[ air a } [ bi1 b1z ] _ [ aribir + aobor  ai1biz + azb ]
a1l a» by1 by as1b11 + axobo1  ax1biz + axboo

_ | 1 2
Q1 2
We can use the above multiplication for any two matrices whose dimensions are multiples of 2.
Each entry can be thought of as submatrices.

[ Air Ap } [ Bi; Bp } _ [ A11B11 +A12Bo; A11Bio +ApBo

Ay Axp B>y Bo A>1B11 +AxBo; A2Bir + AxBoo
_ [ Cii Cp2 ]
Cu Cx
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A Recursive Implementation of the 2 by 2 Matrix Multiplication Algorithm

function C = MATMUL(A, B)
if dim(A) = dim(A) = 1 then
return A-B
end if

Divide into quadrants: A = [

M; = MatMu|(A11,Bu)
M, = MatMu|(A12,le)
M; = MatMuI(Au, Blg)
My = MatMu|(A12, Bzg)
Ms = MatMu|(A21,le)
)
)
)

A Ap ] B_ [ Bi1 B ]
A21 A22 BZl B22

Mg = MatMul(Azz, B12
M7 = MatMul(Az1, B12
Mg = MatMul(Azz2, B2

M:+ My M3+ My

return C = M+ Mg M, + Mg

end function
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A Recursive Implementation of the 2 by 2 Matrix Multiplication Algorithm

function C = MATMUL(A, B) M; = Ay -Bp
if dim(A) = dim(A) = 1 then M, = App-By
return A -B M3 = Aj;;-Bpo
end if
M, = Ajp-Bap
Divide into quadrants: A = [ :; 2;; ] B = [ g; gz ] Ms = Ay -Bp
M; = MatMul(A;1, By1) Mg = Axn: By
M, = MatMul(Aj2, B21) M; = Ay B
M; = MatMuI(Au, Blg) M8 — A22 322
My = MatMu|(A12, 322) C - M M
Ms = MatMul(Az1, Ba;) 1 = M+ M
Ms = MatMul(Az, B12) Cz = M3+ My
M; = MatMul(Az1, B12) Cax = Ms+Ms
Mg = MatMul(Az2, B2y) Cxn = M;+Mg

M:+ My M3+ My

return C = M+ Mg M, + Mg

end function
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A Recursive Implementation of the 2 by 2 Matrix Multiplication Algorithm

function C = MATMUL(A, B) M; = Ay -Bp
if dim(A) = dim(A) = 1 then M, = Aj;pp-By
dre.:fturn A-B M3 = A;;-Bop
end i
M, = A;-B
L a_ | A A _ | B B 4 12 722
Divide into quadrants: A = [ At Ag ] B = [ By, Bop ] Ms = Ay By
M; = MatMul(A;1, By1) Mg = Axn: By
M, = MatMul(Aj2, B21) M; = Ay B
M3 = MatMul(Aj1, B12) Mg = Ay By
My = MatMu|(A12, 322) C - M + M
Ms = MatMul(Agy, Bar) 1= W
Mg = MatMu|(A22, Bl2) C12 = M3 + M4
M; = MatMul(Az1, B12) Cax = Ms+Ms
Mg = MatMul(Az2, B2y) Cxn = M;+Mg
[ M1 +My; M3+ My _ n 2
return C = M5 + M6 M7 + M8 T(n) - 8T(§) + O(n )
end function = O(n3)
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The Man, The Myth, The Legend

Figure: Volkner Strassen, 1969
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The Man, The Myth, The Legend

Figure: Volkner Strassen, 1969
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Wake Forest University

(A11 + A2) - (B11 + B2o)
(A12 +A2)-B1g

A - (Bar — By)

Ay - (B2 — B11)

(A11 + A21) - B

(A2 — Aq1) - (B11 + Boi)
(A21 — Ap) - (B12 + Byo)
M; + My — M5 + My
M3 + Mg

M, + M,y

M; — My + M3 + Mg
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The Man, The Myth, The Legend

M; = (A1 +A2x)-(Bi1+B2)

M, = (Apx+Ax) Big
M3 = Aj;- (B2 —B2)
My = Ax- (B2 —B)

Ms = (A1 +Az) B

Mg = (A2 —Aq1)-(B11+ Boi)
M7 = (A2 —Az)- (B2 + B22)
Ci = M;+My—Ms+ My

Cn = My+My
Cxn = M;—My+ M3+ Mg

' T(n) =7T(5)+ 0O(n?)
Figure: Volkner Strassen, 1969 _ O(n2'81)
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Permuted Algorithms

Permuted Strassen’s Algorithm

Classic Strassen’s Algorithm

M; =

zzz:z
([ Il

N R =
=N R
T [l

C»n =

(A1 + Az) - (By1 + B2)
(A2 + A2) - Byg

A1 - (B21 — Ba2)

Ay - (Bi2 — B1)

(A11 + A21) - Boo

(A2 —Aq1) - (B1r + Boy)
(A21 — Ax) - (B12 + B22)
M; + My — Ms + My
M3 + Ms

M, + M,

M; — M; + M3 + Mg

(A1 + Ax) - (B11 + B22)
(A12+Ax) By

Az - (Bi2 — B11)

(A21 — Ap) - (B12 + B2o)
(A11 + A21) - B

A - (B2 — Bao)

(A2 — Aqr) - (B11 + Bor)
M; + M3 — My — Mg
M; + M3

Ms + Mg

M; — My 4+ M5 + My

Notice how the two algorithms are the same, except that M3 became Mg, My became Ms,
Mg became M7, and M7 became My and the additions in C changed respectively.

Jodo Pinheiro
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Variant Algorithms

Classic Strassen’s Algorithm

(A1 + Ax) - (B11 + B2)
(A2 + Ax) - Bi;

A - (B2 — By)

Az - (B2 — B11)
(A11+A21) - B

(A2 — A1) - (B11 + Bor)
(A21 — Ax) - (B12 + B22)
M; + My — M5 + My
M3 + Mg

M, + My

M; — My + M3 + Mg

Jodo Pinheiro

Variant Strassen’s Algorithm
A1 -By
(A2 + Ap) - (B1a + Bao)
(A2 — Asp) - (B — Boi)
(A1 — A1p — Ap) - (Bog — Bip — Bao)
(—A12) - (—B21)
(A1 — A+ Ay — Ap) - (—Bi12)
(—Az1) - (B11 — B12 + By — Byp)
M; + Ms
M4 — M3 + Ms + Mg
M; — My — M5 + My
M, + M3 — My + Mg
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Exhaustive Search of Fast MatMul Algorithms

M; = (uﬁ)Au + U%g)Alz + U£1)A21 + u(l)Azz) . (Vl(l)Bll + Vl( )Blz + V( )B21v2(2) + 322)
My = (uf}As + 0l Ao + 0l Aoy + 0l M) - (v1 Bri + 115 Bra + V2(1)321V2(2) + By)
M; = (US)AH + u§2)A12 + ugl)Azl + ug)Azz) . (V1(1)|311 + v( )312 + V2(1)B21V2(2) + B2)
My = (0l Ars + 0l Aro + 05} Aoy + uf3) Agy) - (V1(1)|311 + V1(2)312 +viVBavly) + Bao)
Ms = (ulyAss+ ul) Ara + 0 Aoy + u$) Agg) - (v By + v5 Bra + vy Barvsy) + Bao)
Mg = (Uﬁ)An + u§2)A12 + Uél)AZI + uég)An) . (V1(1)|311 + V1(2)|312 + V2(1)321V2(g) + B2)
My = (o) An + oD A + ol Aot + 1) A%) - (v]'Bur + {3 B + Vi 'Barvl)) + Bao)
Cu = wM;+ WMy + wIMs + DM, + wOIMs + w Mg + M,
Cn = WI‘Q)M1 + W(Z)M2 + W(z)m3 + wiIM, + wSMs + WM + WMy
Cu = wiM;+ W(Z)Mz + WMz + wiPM, + W(S)M + WM + WMy
Cpn = ( UM, + W(2)M2 + W(Z)Mg + w( DM, + W2(2)M5 + wiMe + My

Considering only 2 by 2 algotithms of rank 7,
if we are searching for discrete solutions (coeffients -1, 0, 1) then we have 3%* possibilities.
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The Matrix Multiplication Tensor

We can visualize matrix multiplication in tensor format:
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The Matrix Multiplication Tensor

We can visualize matrix multiplication in tensor format:

Which is equivalent to:

A Bu: Cu
A B> Cx T
A B) = — —
M x1 vec(A) x5 vec(B) = M x4 A | %2 |Boy Coy vec(C")
A B Cx
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Matrix Multiplication as Tensor-Vector Products Example

For 2x2 case, these are what the frontal slices of the tensor corresponds to

1 0 0 O 0 0 0 o

0 0 1 O 0 0 0 O

M(:,:,l): 0 0 0 O M(Z,Z,2)= 1 0 0 O
L 0 0 0 O | L 0 0 1 o0 ]
[0 1 0 0] [0 0 0 0]

0 0 0 1 0 0 0 O

M(Z,Z,3): 0 0 0 O M(:7:74): 01 0 0
L 0 0 0 O ] L 0 0 0 1 ]
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Matrix Multiplication as Tensor-Vector Products Example

For 2x2 case, these are what the frontal slices of the tensor corresponds to

1 0 0 O 0 0 0 O
0 0 1 O 0O 0 0 O
MEsD =145 ¢ o o |[MESD=|1 ¢ o o
0 0 0 O] 0 0 1 0|
[0 1 0 0] [0 0 0 0]
0 0 0 1 0O 0 0 O
MGER3)=19 9 o0 o [MESD=]09 1 0 o0
0 0 0 0| 00 0 1|
For example:
A1l B11 0 1 0 0 B1:
A B 0 0 0 1 B
M(:, 5, 3) X1 A;i X2 Bi = [A11 A1x A2; Ax] 0o 0 0 o0 Bz =AnuBp +ApBx =Cp
A B2 0 0 0 0 Boo
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The CP Decomposition

C1/

——
b:
M = +
ai a,
(a) A 3-way Kruskal Tensor Diagram

| | | | | | | | | | |
a; a2 ar-1 ar b1 b2 - b1 br (o] Cr—1 C,
| | | | | | | | | | |

A B

(b) The vectors of the components of the KTensor come together to form factor matrices

Jodo Pinheiro

Wake Forest University
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The Coolest Fact of All Time

M; = (A1 +Ax)-(Bi1+Bp) A IV1|1 I\gz “23 “84 '\15 '\_Af '\87
M2 = (A12 + A22) : Bll A12 0 1 0 0 0 1 0
Ms = A (B —B) Au|0 0 0 0 1 0 1
My = Az (Bi —By) An/1 1 0 1 0 0 -1
Ms = (A11+A2) Bx B. 1 1 0 -1 0 1 0
Mg = (A2 —A11)-(B11+Boi) BE 00 0 1 0 0 1
M7 = (A2 —A)-(B12+ By) Bu|0O 0 1 0 0 1 0
Cii = Mi+M,—Ms+M Bn/1 0 -1 0 1 0 1
212 - m3+m5 Cu/1 0 0 1 -1 0 1
21 = Mo+ My Cx/0 0O 1 0 1 0 O
Cx = M;—Mo+ M3z + Mg Colo 1 0 1 0 0 o0
C»n|l1 -1 1 0 0 1 o0
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Details of the CP Decomposition

Cl/ c,/
] ]
b1 br

ail ar

r
M=[A,B,C[=> aobog
(=1

,
mjj = Z ajgbjecre
—1
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Details of the CP Decomposition Cont.

clj c,/

[ [
by b,
M = + +
ail ar
m n r 2
M —[A,B,C]|? = Z Z (fijk - Z aiebjzcke>
=1 j=1 k=1 =1
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Details of the CP Decomposition Cont.

clj c,/

] ]
by b,
M = + +
ail ar
m n P r 2
M —[A,B,C]|? = Z Z (fijk - Z aiebjzcke)
=1 j=1 k=1 =1

min || M — [A, B, C]||?, subject to A € R™<'B € R™"C € RP*"
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Assumptions for Numerical Optimization

min || M — [A, B, C]||?, subject to A € R™",B € R™" C € RP*"
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Assumptions for Numerical Optimization

min || M — [A, B, C]||?, subject to A € R™",B € R™" C € RP*"

vec(A)
= | vec(B) | e R®™
vec(C)

vV = vecC

Nnw>
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Assumptions for Numerical Optimization

min || M — [A, B, C]||?, subject to A € R™",B € R™" C € RP*"

A vec(A)
vV = vec B = | vec(B) | e R®™
C vec(C)

d(v) = vec(M — [A,B,C]) : R — R"™
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Assumptions for Numerical Optimization

min || M — [A, B, C]||?, subject to A € R™",B € R™" C € RP*"

A vec(A)
vV = vec (|: B ]) = |:vec(B) ] e R3™
C vec(C)

d(v) = vec(M — [A,B,C]) : R — R"™

1
f(v) = Sllo()|* - R*" - R
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Assumptions for Numerical Optimization

min || M — [A, B, C]||?, subject to A € R™",B € R™" C € RP*"

A vec(A)
vV = vec (|: B ]) = |:vec(B) ] e R3™
C vec(C)

d(v) = vec(M — [A,B,C]) : R — R"™

lo()II? - %" — R

vec(é)
= | vec(B) | e R®™
C)

N —

f(v) =

O 1 DI

vec(
25 /61
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Damped Gauss Newton

Given our search direction (JTJ + Al)dx = —V£(v), where J is the jacobian of ¢(n) and Vf is
the gradient of f, we wish to know how to (1) compute Vf given a KTensor [A, B, C].

6f/8A Bf/avec(A) "
Vi = vec af/(')B = 6f/8vec(B) S R3"r
of [ac Of [ovec(C)

Where each partial derivative is defined as:

o Jon = —M)(C©B)+ A(CTC +BTB) € R™*"
/o8 = —M(C©A)+B(CTC+ATA) € R™*"
offoc = —Mz)(B®A)+ C(BTB*ATA) € R™ >/
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Damped Gauss Newton Cont.

Given our search direction (JTJ + Al)dx = —V£(v), where J is the jacobian of ¢(n) and Vf is

the gradient of f, we wish to know how to (2) apply (J7J + Al) to vector di without forming
J explicitly

vec(A(BTB  CTC + Al) + A(BTB + CTC + Al) + A(BTB  CTC + Al))
(JTJ+ Ald, = | vec(B(ATA x CTC + Al) + B(ATA + CTC + Al) 4+ B(ATA « CTC + Al))
vec(C(ATA x BTB + \l) + C(ATA « BTB + \l) + C(ATA « BTB + )l))

Believe it or not,
computing the above saves us more time than computing (J7J + Al)d, directly...

Jodo Pinheiro Wake Forest University 27 /61



CP Damped Gauss Newton Algorithm

Input: Matrix Multiplication Tensor M,
CP Tensor Rank r,
Damping Parameter A € R,
Convergence Tolerance € > 0
Qutput: CP Tensor K
function CP_DGN(M, r, A\ €)
Initialize K and K_prev to be a cell of length 3 of n® x r matrices
for i = 1: Maxlters do

fe— M- K| > Compute Function Value
VF «— [vec (9%) vec (25) vec (Z5)IT > Compute Gradient
S «— Solution to(JTJ + M)K = —VFf > Conjugate Gradient Iter. Alg.

while Goldstein Conditions Are Not Satisfied do
K <— K_prev + aS
frew +— 3| M — K|]?
a— af2

end while

if f-fhen < € then
break

end if

end for
end function

Jodo Pinheiro Wake Forest University 28 /61



Cyclic Invariance in Fast Matrix Multiplication Algorithms

Classic Strassen Permuted Strassen
M; M, M3 My Ms Mg My M; M, M3 My Ms Mg My
A;/1 0 1 0 1 -1 0 A1 0 0 0 1 1 —1
AL 0O 1 0 0 0 1 0 Anl O 1 0 0 0 0 1
A,/O 0 O O 1 0 1 Ay O O O 1 1 0 0
A»/ 1 1 0 1 0 0 -1 A»n|l 1 1 1 -1 0 0 0
Bi;]1 1 0 -1 0 1 0O B/ 1 1 -1 0 0 0 1
B,/ 0 0 0 1 0 0 1 B,/ 0 O 1 1 0 0 O
B0 0 1 0 0 1 0 B0 O O 0O 0 1 1
B»/1 0 -1 0 1 0 1 B»|1 0 0 1 1 -1 0
Caha/1 0 0 1 -1 0 1 Ca/1 0 1 1 -1 0 0
Cx|0O O 1 0 1 0 O Cx/O O O O 1 1 0
Cp/O 1 0 1 0 0 O Cp/O 1 1 0 0 0 O
C»nl1l -1 1 0 0 1 0 Cnp|l1 -1 0 0 0 1 1

r=7 r=7,rs=1r.=2
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Different Symmetric Ranks

Pemuted Strassen rs = 1,r, =2 Variant Strassen rs = 4,r. =1
M; M, M3 My Ms Mg My M; M, M3 My Ms Mg My
A1 0 0O 0 1 1 -1 A1 0 0 O O 1 0
AL 0O 1 0 0 0 0 1 Ap/l O O -1 1 0 1 —1
A,/ O O O 1 1 0 0 Ayl O 1 0 -1 -1 -1 0
A»n| 1 1 1 -1 0 0 0 A»nl 0O 1 1 -1 0 -1 0
By 1 1 -1 0 0 0 1 Bi:/1 0 0 0 0O 0 1
B,/ 0 O 1 1 0 0 O B,/ 0 0 -1 1 -1 0 1
B,/ 0O O O 0O 0 1 1 B0 1 0 -1 0 -1 -1
B» 1 0 0O 1 1 -1 0 B»/0 1 1 -1 0 0 -1
Cha/1 0 1 1 -1 0 0 Cihp/1 0O O O 1 0 0
Cxy| O O 0 O 1 1 0 Cxn|/ O 0 -1 1 1 -1 0
Cp|/0O 1 1 O 0O 0 O Cp/O0O 1 0 -1 -1 0 -1
Cnp|(1 -1 0 0 0 1 1 C»n/ 0 1 1 -1 -1 0 0
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Adapting the CP_DGN Algorithm

We now wish to search for algorithms with Cyclic Invariant structure
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Adapting the CP_DGN Algorithm

We now wish to search for algorithms with Cyclic Invariant structure

r=rs+3rc

Jodo Pinheiro Wake Forest University 31/61



The Chickenfeet

I I I I
I S + + I & + I ' + + I v
S; Sr, up u,
A £
+ I " + o I b
/— /—
+ I e + o+ I "
1 b,
1 m n P rs re 2
=5 E E E Xijk — E SigSigSkq — E (uirvjiwi + wipujivig + viwjiugg)
ij Kk q I
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What does that mean Mathematically?

Now we impose the following structure on our algorithm
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What does that mean Mathematically?

Now we impose the following structure on our algorithm

A vec(A)
vV = vec ([ B ]) = |:vec(B) ] e R3™
C vec(C)
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What does that mean Mathematically?

Now we impose the following structure on our algorithm

A=[S U V W]
B=[S W U V|
C=[S V W U]
S vec(S)
A vec(A)
v = vec ([ B ]) = |: vec(B) ] € R3™ vV = vec \L; = :ZEE\L;; e R™
C vec(C) W vec(W)

Exaustively, this is only 228, Then we adapt our gradient and how to apply (J7J + Al)d, with
this structure.

Jodo Pinheiro Wake Forest University 33/61



Details of Adapting the CP_DGN Algorithm

The gradients become this:

IL = 3.(S(STS*STS)+U(VTS+WTS)+V(UTS+WTS) L W(UTS+VTS)
—(X)+X(2)+X(3))(SS))

O = 3.(S(STVASTW)+U(VTVAWTW)4V(WTVsUTW)+W(UTVAVTW) )

of —X1)(VOW)=X(2)(WOV)—X3)(VOW)

S0 = 3(S(STUXSTW)+U(WTUVTW) 1 V(UTUsWTW)+W(VTUUTW) )

Ny —X(1)(WOU)—X2) (UOW) —X 3) (WEU)

S = 3 (S(STUASTV)HU(VTUSWTV) 1 V(WTUXUTV)+W(UTUSVTV))

7X(1) (U@V)*X(z) (V@U)*X(3)(U@V)
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Details of Adapting the CP_DGN Algorithm Cont.

Applying (JTJ + Ald), become this (there are 12 mode of these):

..lelTJ..jlsvec(is) = 3-vec(Ks(STV)+(STW)+ ((IﬁTW) (STV)—I—(KTVT) +(STW)))
0 Uvec(Ku) = 3uvec(Ky(VTV)=(WTW)+V(K], TW)*(WTV)—i-W(KT IV)+(VTW))
leUlevec( v) = 3-vee Ky (WTV)(UTW)+W(K]W)+(UTV)+U(K V)« (WTW) )
Udwvec(Ky) = 3vec(Kw(UTV)=(VTW)+U(KE,W)+(VTV) V(K] V)*(UTW))

With all of these modifications we implement our new algorithm, called it CI_CP_DGN
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Our Solutions

| n=2,r=4] S [ n=3r=23] S || n=4r=49 | S| n=5 [S]

rs=1,r. =2 | 1000s rs=2,rc=7 | 100s || rs=1,r.=16 6 r=109 | 2
rs =4,r. =1 | 1000s rs=5,r=6 | 100s || rs=4,r. =15 0 r=93 | -
rs=8,ro=5 - rs=171,r.=14 - r=91 |0
rs=11,r. =4 | 100s || rs =10,r, =13 | - -
rs=14,r. =3 - rs=13,r. =12 | 2
re=17,r. =2 - re =16,r. =11 | 32
rs=20,r. =1 - -
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Conclusions - Project 2

@ These algorithms are hard to find, we make it easier
o Current work is done to impose further structure in the algorithms we have.

@ Once that is automated, we want to modify CI_CP_DGN to have these Structures
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Parallel Higher-Order Orthogonal Iteration for Tucker

Decomposition with Rank Adaptivity

WAKE FOREST
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The Tucker Decomposition

s/

X
Q
o]

T%[[Q;A,B,C]]:gxlAX2BX3C

qg r s
ik ® 3 DD 8apy - diabjsCiy, V(i j, k) € [m] @ [n] @ [p]

a=1p=1~v=1
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The Tucker Decomposition Trade-Off
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The Tucker Decomposition Trade-Off

Compression

To know compression beforehand, we specify
the size of the core tensor G.

compression mnp mnp
ratio = ~
grs+gm-+ nr + sp qrs

This is the rank-specified formulation, where
we cannot say in advance what the error
will be
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The Tucker Decomposition Trade-Off

Compression

To know compression beforehand, we specify  To know accuracy beforehand, we specify the

the size of the core tensor G. maximum relative error threshold
compression mn mn X—-[G;UV,W
pres: % p I [[ﬁ)(l,| WII| <e

T grs+qm+nr+sp grs
This is the error-specified formulation, where
we cannot say in advance what the
compression will be

This is the rank-specified formulation, where
we cannot say in advance what the error
will be
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The Two Protagonists

function STHOSVD(X, r or €)
A — LLSV(X(1),n or€)
G+ X x1 AT

B < LLSV(G(z), 12 or ¢)
G+ Gx1 BT

C «~ LLSV(G(3), r3 or 6)
G+ Gx3CT
return [G; A, B, C]

end function
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The Two Protagonists

function STHOSVD(X, r or €)
A — LLSV(X(1),n or€)
G+ X x1 AT

B < LLSV(G(z), 12 or ¢)
G+ Gx1 BT

C + LLSV(G(3)7 r3 or 6)
G« Gx3(CT
return [G; A, B, C]

end function

function U = LLSV([Y,r or¢)
S=Y.YT
[U,A] = eig(S)
return U(:, 1:r)

end function

LLSV — Left Leading Singular Vectors

Jodo Pinheiro Wake Forest University 41/61



The Two Protagonists

function STHOSVD(X, r or €)

A <« LLSV(Xq), n or€) function HOOI(X, r)
G+ X x AT Initialize A, B, C randomly
for Max Iterations do
B < LLSV(G(z), 12 or ¢) Y =X x, BT x3CT
G+ Gx1 BT A+~ LLSV(Y(l), r)
C « LLSV(G), 13 or €) Y =X x; AT x5 CT
g Gx3CT B« LLSV(Y(2), 1)
return [G; A, B, C]
end function Y = X x; AT x, BT
function U = LLSV([Y,r or¢) C <+ LLSV(Y(3),13)
S=Y.YT end for
[U, A] = eig(S) G« Yx3CT
return U(:, 1:r) return [G; A, B, C]
end function end function

LLSV — Left Leading Singular Vectors
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Optimization 1: Dimension Tree Memoization

function HOOI(X, r)
Initialize A, B, C randomly
for Max Iterations do

y =X X9 BT X3 CcT
A+ LLSV( Y(l), r1)

y =X X1 AT X3 (o)
B« LLSV(Y), 12)

j)i =X X1 AT X9 BT
C < LLSV(Y(3), 13)
end for
g < y X3 CT
return [G; A, B, C]
end function
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Optimization 1: Dimension Tree Memoization

function HOOI-DT(X, r)

function HOOI(X, r) Initialize A, B, C randomly

Initialize A, B,'C randomly for Max lterations do
for Max lterations do — ¥ %2 CT
Y = X x BT x5CT itempy— ><3BT
= Jtemp X2
A LLSV (Y, n) A LLSV(Y ), )
y =X X1 AT X3 CcT
V= ytemp x1 AT
B« LLSV(Y(2), r2) B« LLSV(Y(2), 12)
y = X X1 AT X9 BT
C < LLSV(Y(3), 13)
end for
G« Vx3CT
return [G; A, B, C]
end function

JJ =X X1 AT X9 BT
C«+ LLSV(Y(?,)7 r3)
end for
G+ )Y X3 CT
return [G; A B, C]
end function
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Optimization 1: Dimension Tree Memoization

function HOOI-DT(X, r)

{1,2,3} Initialize A, B, C randomly
- g for Max lterations do
{1,2} {3} Yeemp = X x3 CT
1 / \2 y:ytempx2BT
n 2 A LLSV(Y(y), n)

y = ytemp X1 AT
B «+ LLSV(Y(Z), r2)

30

JJ =X X1 AT X2 BT
C + LLSV(Y(?,)7 r3)
end for
G+ Yx3CT
return [G; A B, C]
end function

Number of TTMs
N
o

—
o

Number of Dimensions
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Optimization 2: Subspace Iterations

function HOSI(X, r)
Initialize A, B, C randomly
for Max Iterations do

Y =X x,BT X3 (o)
A« LLSV(Y,AL)

y =X X1 AT X3 CcT
B+ LLSV(),B,2)

y =X X1 AT X9 BT
C+ LLSV(Y,C,3)
end for
Gg+Yy X3 CcT
return [G; A, B, C]
end function
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Optimization 2: Subspace Iterations

function HOSI(X, r)
Initialize A, B, C randomly
for Max Iterations do

Y= X %, BT x5 CT function U = LLSV(),U, n)
= 2 3

g = y Xn uT
A« LLSV(Y, A1) U = Contract(), G, n) >TTT
[U,~] = ar(V)

y:XX]_ATX:;CT

£ .
B« LLSV(Y,B,?2) end function

function U = LLSV(Y,r or ¢)

e LLv.C3) Su:/\Y;Y-T s
C«+ LLSV(Y,C,3) [U,A] = eig(S)
end for return U(:, 1:r)

G+ Yx3CT end function

return [G; A, B, C]
end function

Jodo Pinheiro Wake Forest University 44 /61



Higher Order Subspace Iteration with Dimension Tree (HOSI-DT)

Input: Tensor X' € R™m > *nd
Ranksr =r,...,rgq
Output: TTensor T of ranks r with 7 ~ X
function HOSI-DT(X, U, m, r)
if length(m) == 1 then

G =X xnUJ, > Update Core

Un=Ym-" G(Tm) > Contract Two Tensors on Mode k

[Um,~] =qr(Unm) > Orthogonalize Factor Matrix
else

Equally partition m = [u, 7]
Xere = X x; U, Vien

[G,U] = HOSI-DT(Xiet, U, 1, 1) > Left Recursion

Xiight = X x; U, Viep

[G,U] = HOSI-DT(X;ight, U, n, 1) > Right Recursion
end if

end function
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Transforming HOOI into an error-specified algorithm

minHX — g X1 A X2 B X3 C3H
subject to G € R7*™° A € R™*9 B € R™",C € RP**

Now suppose we have a relative error tolerance of how accurate we want our approximation to be.
Then the approximation must satisfy:

=7l _,
1]

I =TI < ||

11 = 191 < €& |12

(1—e)- X2 < 9]
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Transforming HOOI into an error-specified algorithm

minHX—gXlAXQBX3C3H (1)
subject to G € R A € R™*9 B € R™" C € RP*®

Now suppose we have a relative error tolerance of how accurate we want our approximation to be.
Then the approximation must satisfy:

(1) [1X7 < gI1” ()

Then we know if our tucker tensor satisfies the error tolerance solely on ||G||. If the error tolerance is
satisfied, we can find a smaller tucker representation that still satisfies the error by analyzing the core
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Visualizing Adaptive HOOI

min [|G(1 : r)||? (3)
subject to ||G(1: r)[|? > (1 — €2)]|X|?

—
T !
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Adaptive HOOI

function ApDAPTIVEHOOI(X, r, €)
Initialize A, B, C randomly

for Maximum Number of Iterations do function PERFORMCOREANALYSIS(G, €, t)
Y =X x3BT x3CT if ||G]12 > (1 — €?)||X]||? then
A« LLSV(Y(1y, 1) Find r = arg min ||G(1 : r)||2

subject to ||G(1: N2 > (1 — 2)|X|P
Y =X x1 AT x3CT

B + LLSV(Y(2),2) Truncate G, A, B, C according to r
else
Y =X x1 AT x, BT r=ar
C + LLSV(Y(3)7 r3) Increase columns of A, B, C according to r
G+ Yx3CT end if
r = performCoreAnalysis(G, ¢, r) return r
end for end function

return [G, Uy.4]
end function
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TuckerMPI and Parallel Tensor Distribution

For d-way tensor, we use d-way processor grid
with Cartesian block distribution

TUCKERMPI

1
L . .
o Existing C++/MPI library <
o Implements deterministic STHOSVD s ‘
o Has efficient sequential and parallel
kernels for SVD and TTM Example: p1 X pp x p3 =3 x5x2
Local tensor size: * x 2 5 B
pr P2 Pp3
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Parallel Scaling of Synthetic Data in Single Precision

3-way : 3750 — 30 4-way : 560 — 10
T T T T T T T T T T T 11 N e e B
B n 29 - N
29 B | 28 - |
28 I\ FE=—p—8 N 7
2 [ |
27 - T —e—o—a—0 ] 6
o 20 ] ) 2> h
E 250 1 E 2°F ]
~ 24 | . = 24 -
23 - . 23 - |

22 | | —=— HOOI
21 | | —8— HOOI-DT
0 —a—  HOSI
2 —a— HOSI-DT

- 2 | |—8— HOOI

| 21 —a— HOOI-DT
2° 1+ Hosi

20 | s+ nosiDT

271 H . sthoswo 7 9—1 |{ = sTHoSVD o |
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
N VY X D0 MDA DO N VY % D0 XD A DO
Number of Cores Number of Cores
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Breakdown of 3-way Parallel Scaling of Synthetic Data in Single Precision

3way: 1 Core(s) 3way: 4096 Core(s)
T T T 250 T T T
2,000 - B 200 |- .
1,500 - s
o b L, 150 | -
E E
= 1,000 | IV B i
500 |- = 50 | |
i | l:
0, H _m | 0,

o\ < 5 < QO o\ < c) ’( \S)
O Q) 0 N Y Q §) N
\'s ‘(\ o \ ‘(\ 2
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Breakdown of 4-way Parallel Scaling of Synthetic Data in Single Precision

4way: 1 Core(s) 4way: 4096 Core(s)

1,200 | L . .| |
1,000 =

, 8001 N by |

S £

= 600 — — a F o1 —D = a
400 - -

0.5 -
200 |- L

RO < 0 \H S < J
o o‘) a0 oW ORGSO
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Miranda Data Set (3072 x 3072 x 3072) - 1024 Cores - 115 GB

Error vs Time

Error vs Size
T

o

005|
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0.01 |
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_— 0.05 |- BM—A |
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| |
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Miranda Data Set (3072 x 3072 x 3072) - 1024 Cores - 115 GB
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HCCI Data Set (672 x 672 x 33 x 626) - 128 Cores - 75 GB

Error vs Time Error vs Size
T T T T

0.1p L . 0.1F .
0.05 | l«a«» . 0.05 | \—A .

0.01| Br\w = o 001} B\m-e—a -
|
1
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HCCI Data Set (672 x 672 x 33 x 626) - 128 Cores - 75 GB

1e-01 Error 5e-02 Error 1e-02 Error
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SP Data Set (500 x 500 x 500 x 33 x 400) - 2048 Cores - 4.4 TB

Relative Error

Error vs Time
T T
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SP Data Set (500 x 500 x 500 x 33 x 400) - 2048 Cores - 4.4 TB
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Conclusions - Project 2

Dimension Tree optimizes TTM operations on HOOI
Subspace lteration optimizes LLSV operations on HOOI
AdaptiveHOOI removes rank-specified constraint on HOOI
https://gitlab.com/tensors/TuckerMPI

This work will be soon be published to SC25 two days ago
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