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Two Projects, Two Journeys

Fast Matrix Multiplication

A Simple and Famous Algorithm:
Every student knows the O(n3) version, but a
lower bound proof exists, and we are nowhere near
it with practical algoritms

Fundamental Operation in Computation:
It is a core building block in numerous algorithms
across scientific computing, engineering, and data
science

Impact on Other Algorithms:
Faster matrix multiplication improves the
performance of many higher-level algorithms,
including those in graph theory and numerical
linear algebra.

Scientific Simulations

Accelerating Discovery:
Scientific computations allow researchers to
simulate, model, and analyze complex phenomena
without relying solely on physical experiments,
which can be costly or impractical.

Handling Massive Datasets:
Modern scientific research often involves massive
datasets, which require significant computational
power to process, analyze, and extract meaningful
insights.

Tensor Decompositions Help:
These uncover patterns on the data without
requiring the whole dataset to be stored in
memory, but rather a small representation of it.
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What Is A Tensor?

Figure: Question #45 of the Math Conventions Survey [1]
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Multidimensional Arrays

Figure: Tensors of orders One, Two, and Three

xn

1

(a) Vector x ∈ Rn is a 1-way
tensor

Xm

n

(b) Matrix X ∈ Rm×n is a 2-way
tensor

Xm

n

p

(c) Tensor X ∈ Rm×n×p is a 3-way
tensor
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Multidimensional Arrays Cont.


...


(a) A 4D Tensor

X ∈ Rn1×n2×n3×n4


. . .

...
. . .

...

. . .


(b) A 5D Tensor

X ∈ Rn1×n2×n3×n4×n5

Figure: Tensors of orders four and five
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Tensor Slices

(a) Horizontal Slices X (i , :, :) (b) Lateral Slices X (:, j , :) (c) Frontal Slices X (:, :, k)

Figure: Two-way slices of a 3-way tensor
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Tensor Fibers

(a) Column Fibers x:jk (b) Row Fibers xi :k (c) Tube Fibers xij :

Figure: Fibers of a 3-way tensor

João Pinheiro Wake Forest University 6 / 61



Tensor Unfoldings - Mode 1

Figure: Unfoldings of a 3-way tensor

(a) Mode 1 Fibers (b) Mode 1 Unfolding X(1)
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Vector-Vector Products

Vector Inner Products

c = ⟨a,b⟩ = a⊺b ∈ R

=
[
a1 · · · an

]  b1
...
bn


=

n∑
i=1

aibi

Vector Outer Products

C = a ◦ b = ab⊺ ∈ Rm×n a1b1 · · · a1bn
...

. . .
...

amb1 · · · ambn

 =

 a1
...
am

 [ b1 · · · bn
]

cij = aibj
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Matrix-Matrix Products

Let A,B ∈ Rn×n. Matrix Multiplication A · B = C can be visualized as

Each entry of C is an inner product between corresponding
rows of A and columns of B

cij =

p∑
k=1

aikbkj
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Tensor-Matrix Multiplication (TTM) - Tensor Format

Y ∈ Rq×n×p

=

A ∈ Rq×m

X ∈ Rm×n×p

Figure: Tensor form TTM: the first row of A and first mode-1 fiber of X are emphasized with arrows.
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Tensor-Matrix Multiplication (TTM) - Matrix Format

Y(1) ∈ Rq×np

=

A ∈ Rq×m

X(1) ∈ Rm×np

Figure: Matrix Form TTM: Multiplying tensor X with matrix A in the 1st mode is the same as
multiplying as the matrix-matrix product of A and X(1).
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Searching for Fast Matrix Multiplication Algorithms with Cyclic
Invariance using CP Decompositions

Department of Computer Science and Department of Mathematics

João Pinheiro, Grey Ballard, Frank Moore, Pratyush Mishra
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A 2 by 2 example of Matrix Multiplication

Consider a simple example of 2 by 2 matrices[
a11 a12
a21 a22

] [
b11 b12
b21 b22

]
=

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
=

[
c11 c12
c21 c22

]

We can use the above multiplication for any two matrices whose dimensions are multiples of 2.
Each entry can be thought of as submatrices.[

A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
=

[
C11 C12

C21 C22

]
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A Recursive Implementation of the 2 by 2 Matrix Multiplication Algorithm

function C = MatMul(A,B)
if dim(A) = dim(A) = 1 then

return A · B
end if

Divide into quadrants: A =

[
A11 A12

A21 A22

]
B =

[
B11 B12

B21 B22

]
M1 = MatMul(A11,B11)
M2 = MatMul(A12,B21)
M3 = MatMul(A11,B12)
M4 = MatMul(A12,B22)
M5 = MatMul(A21,B21)
M6 = MatMul(A22,B12)
M7 = MatMul(A21,B12)
M8 = MatMul(A22,B22)

return C =

[
M1 +M2 M3 +M4

M5 +M6 M7 +M8

]
end function

M1 = A11 · B11

M2 = A12 · B21

M3 = A11 · B12

M4 = A12 · B22

M5 = A21 · B11

M6 = A22 · B21

M7 = A21 · B12

M8 = A22 · B22

C11 = M1 +M2

C12 = M3 +M4

C21 = M5 +M6

C22 = M7 +M8

T (n) = 8T (n2 ) + O(n2)

= O(n3)
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The Man, The Myth, The Legend

Figure: Volkner Strassen, 1969

M1 = (A11 + A22) · (B11 + B22)
M2 = (A12 + A22) · B11

M3 = A11 · (B21 − B22)
M4 = A22 · (B12 − B11)
M5 = (A11 + A21) · B22

M6 = (A12 − A11) · (B11 + B21)
M7 = (A21 − A22) · (B12 + B22)
C11 = M1 +M4 −M5 +M7

C12 = M3 +M5

C21 = M2 +M4

C22 = M1 −M2 +M3 +M6

T (n) = 7T (n2 ) + O(n2)

= O(n2.81)
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Permuted Algorithms

Classic Strassen’s Algorithm
M1 = (A11 + A22) · (B11 + B22)
M2 = (A12 + A22) · B11

M3 = A11 · (B21 − B22)
M4 = A22 · (B12 − B11)
M5 = (A11 + A21) · B22

M6 = (A12 − A11) · (B11 + B21)
M7 = (A21 − A22) · (B12 + B22)
C11 = M1 +M4 −M5 +M7

C12 = M3 +M5

C21 = M2 +M4

C22 = M1 −M2 +M3 +M6

Permuted Strassen’s Algorithm
M1 = (A11 + A22) · (B11 + B22)
M2 = (A12 + A22) · B11

M3 = A22 · (B12 − B11)
M4 = (A21 − A22) · (B12 + B22)
M5 = (A11 + A21) · B22

M6 = A11 · (B21 − B22)
M7 = (A12 − A11) · (B11 + B21)
C11 = M1 +M3 −M4 −M6

C12 = M2 +M3

C21 = M5 +M6

C22 = M1 −M2 +M5 +M7

Notice how the two algorithms are the same, except that M3 became M6, M4 became M3,
M6 became M7, and M7 became M4 and the additions in C changed respectively.
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Variant Algorithms

Classic Strassen’s Algorithm
M1 = (A11 + A22) · (B11 + B22)
M2 = (A12 + A22) · B11

M3 = A11 · (B21 − B22)
M4 = A22 · (B12 − B11)
M5 = (A11 + A21) · B22

M6 = (A12 − A11) · (B11 + B21)
M7 = (A21 − A22) · (B12 + B22)
C11 = M1 +M4 −M5 +M7

C12 = M3 +M5

C21 = M2 +M4

C22 = M1 −M2 +M3 +M6

Variant Strassen’s Algorithm
M1 = A11 · B11

M2 = (A12 + A22) · (B12 + B22)
M3 = (A22 − A21) · (B22 − B21)
M4 = (A21 − A12 − A22) · (B21 − B12 − B22)
M5 = (−A12) · (−B21)
M6 = (A11 − A12 + A21 − A22) · (−B12)
M7 = (−A21) · (B11 − B12 + B21 − B22)
C11 = M1 +M5

C22 = M4 −M3 +M5 +M6

C22 = M2 −M4 −M5 +M7

C22 = M2 +M3 −M4 +M5
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Exhaustive Search of Fast MatMul Algorithms

M1 = (u
(1)
11 A11 + u

(1)
12 A12 + u

(1)
21 A21 + u

(1)
22 A22) · (v (1)11 B11 + v

(1)
12 B12 + v

(1)
21 B21v

(1)
22 + B22)

M2 = (u
(2)
11 A11 + u

(2)
12 A12 + u

(2)
21 A21 + u

(2)
22 A22) · (v (2)11 B11 + v

(2)
12 B12 + v

(2)
21 B21v

(2)
22 + B22)

M3 = (u
(3)
11 A11 + u

(3)
12 A12 + u

(3)
21 A21 + u

(3)
22 A22) · (v (3)11 B11 + v

(3)
12 B12 + v

(3)
21 B21v

(3)
22 + B22)

M4 = (u
(4)
11 A11 + u

(4)
12 A12 + u

(4)
21 A21 + u

(4)
22 A22) · (v (4)11 B11 + v

(4)
12 B12 + v

(4)
21 B21v

(4)
22 + B22)

M5 = (u
(5)
11 A11 + u

(5)
12 A12 + u

(5)
21 A21 + u

(5)
22 A22) · (v (5)11 B11 + v

(5)
12 B12 + v

(5)
21 B21v

(5)
22 + B22)

M6 = (u
(6)
11 A11 + u

(6)
12 A12 + u

(6)
21 A21 + u

(6)
22 A22) · (v (6)11 B11 + v

(6)
12 B12 + v

(6)
21 B21v

(6)
22 + B22)

M7 = (u
(7)
11 A11 + u

(7)
12 A12 + u

(7)
21 A21 + u

(7)
22 A22) · (v (7)11 B11 + v

(7)
12 B12 + v

(7)
21 B21v

(7)
22 + B22)

C11 = w
(1)
11 M1 + w

(2)
11 M2 + w

(3)
11 M3 + w

(4)
11 M4 + w

(5)
11 M5 + w

(6)
11 M6 + w

(7)
11 M7

C12 = w
(1)
12 M1 + w

(2)
12 M2 + w

(3)
12 M3 + w

(4)
12 M4 + w

(5)
12 M5 + w

(6)
12 M6 + w

(7)
12 M7

C21 = w
(1)
21 M1 + w

(2)
21 M2 + w

(3)
21 M3 + w

(4)
21 M4 + w

(5)
21 M5 + w

(6)
21 M6 + w

(7)
21 M7

C22 = w
(1)
22 M1 + w

(2)
22 M2 + w

(3)
22 M3 + w

(4)
22 M4 + w

(5)
22 M5 + w

(6)
22 M6 + w

(7)
22 M7

Considering only 2 by 2 algotithms of rank 7,
if we are searching for discrete solutions (coeffients -1, 0, 1) then we have 384 possibilities.
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The Matrix Multiplication Tensor

We can visualize matrix multiplication in tensor format:

M

A B

=

CT

Which is equivalent to:

M×1 vec(A)×2 vec(B) =M×1


A11

A12

A21

A22

×2


B11

B12

B21

B22

 =


C11

C21

C12

C22

 = vec(CT)
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Matrix Multiplication as Tensor-Vector Products Example

For 2x2 case, these are what the frontal slices of the tensor corresponds to

M(:, :, 1) =


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

M(:, :, 2) =


0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0



M(:, :, 3) =


0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

M(:, :, 4) =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1



For example:

M(:, :, 3)×1


A11

A12

A21

A22

×2


B11

B12

B21

B22

 = [A11 A12 A21 A22]


0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0



B11

B12

B21

B22

 = A11B12 + A12B22 = C12
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The CP Decomposition

M =

a1

b1

c1

+ · · · +

ar

br

cr

(a) A 3-way Kruskal Tensor Diagram

a1 b1 c1a2 b2 c2. . . . . . . . .ar−1 br−1 cr−1ar br cr

A B C

(b) The vectors of the components of the KTensor come together to form factor matrices
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The Coolest Fact of All Time

M1 = (A11 + A22) · (B11 + B22)
M2 = (A12 + A22) · B11

M3 = A11 · (B21 − B22)
M4 = A22 · (B12 − B11)
M5 = (A11 + A21) · B22

M6 = (A12 − A11) · (B11 + B21)
M7 = (A21 − A22) · (B12 + B22)
C11 = M1 +M4 −M5 +M7

C12 = M3 +M5

C21 = M2 +M4

C22 = M1 −M2 +M3 +M6

M1 M2 M3 M4 M5 M6 M7

A11 1 0 1 0 1 −1 0
A12 0 1 0 0 0 1 0
A21 0 0 0 0 1 0 1
A22 1 1 0 1 0 0 −1
B11 1 1 0 −1 0 1 0
B12 0 0 0 1 0 0 1
B21 0 0 1 0 0 1 0
B22 1 0 −1 0 1 0 1

C11 1 0 0 1 −1 0 1
C21 0 0 1 0 1 0 0
C12 0 1 0 1 0 0 0
C22 1 −1 1 0 0 1 0
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Details of the CP Decomposition

M =

a1

b1

c1

+ · · · +

ar

br

cr

M = JA,B,CK =
r∑

ℓ=1

aℓ ◦ bℓ ◦ cℓ

mijk =
r∑

ℓ=1

aiℓbjℓckℓ
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Details of the CP Decomposition Cont.

M =

a1

b1

c1

+ · · · +

ar

br

cr

∥M− JA,B,CK∥2 ≡
m∑
i=1

n∑
j=1

p∑
k=1

(
tijk −

r∑
ℓ=1

aiℓbjℓckℓ

)2

min ∥M− JA,B,CK∥2, subject to A ∈ Rm×rB ∈ Rn×rC ∈ Rp×r
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Assumptions for Numerical Optimization

min ∥M− JA,B,CK∥2, subject to A ∈ Rm×r ,B ∈ Rn×r ,C ∈ Rp×r

v = vec

 A
B
C

 =

 vec(A)
vec(B)
vec(C)

 ∈ R3nr

ϕ(v) = vec(M− JA,B,CK) : R3nr → Rn8

f (v) =
1

2
∥ϕ(v)∥2 : R3nr → R

dk = vec

 Ā
B̄
C̄

 =

 vec(Ā)
vec(B̄)
vec(C̄)

 ∈ R3nr
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Damped Gauss Newton

Given our search direction (J⊺J+ λI)dk = −∇f (v), where J is the jacobian of ϕ(n) and ∇f is
the gradient of f , we wish to know how to (1) compute ∇f given a KTensor JA,B,CK.

∇f = vec

 ∂f/∂A
∂f/∂B
∂f/∂C

 =

 ∂f/∂vec(A)
∂f/∂vec(B)
∂f/∂vec(C)

 ∈ R3n2r

Where each partial derivative is defined as:

∂f/∂A = −M(1)(C⊙ B) + A(C⊺C ∗ B⊺B) ∈ Rn2×r

∂f/∂B = −M(2)(C⊙ A) + B(C⊺C ∗ A⊺A) ∈ Rn2×r

∂f/∂C = −M(3)(B⊙ A) + C(B⊺B ∗ A⊺A) ∈ Rn2×r
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Damped Gauss Newton Cont.

Given our search direction (J⊺J+ λI)dk = −∇f (v), where J is the jacobian of ϕ(n) and ∇f is
the gradient of f , we wish to know how to (2) apply (J⊺J+ λI) to vector dk without forming
J explicitly

(J⊺J+ λI)dk =

 vec(Ā(B⊺B ∗ C⊺C+ λI) + A(B̄⊺B ∗ C⊺C+ λI) + A(B⊺B ∗ C̄⊺C+ λI))
vec(B(Ā⊺A ∗ C⊺C+ λI) + B̄(A⊺A ∗ C⊺C+ λI) + B(A⊺A ∗ C̄⊺C+ λI))
vec(C(Ā⊺A ∗ B⊺B+ λI) + C(A⊺A ∗ B̄⊺B+ λI) + C̄(A⊺A ∗ B⊺B+ λI))


Believe it or not,
computing the above saves us more time than computing (J⊺J+ λI)dk directly...
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The CP Damped Gauss Newton Algorithm
Input: Matrix Multiplication TensorM,

CP Tensor Rank r ,
Damping Parameter λ ∈ R+,
Convergence Tolerance ϵ > 0

Output: CP Tensor K
function CP DGN(M, r , λ, ϵ)

Initialize K and K prev to be a cell of length 3 of n2 × r matrices
for i = 1 : MaxIters do

f ←− 1
2∥M−K∥2 ▷ Compute Function Value

∇f ←− [vec
(
∂f
∂A

)
vec
(
∂f
∂B

)
vec
(
∂f
∂C

)
]⊺ ▷ Compute Gradient

S ←− Solution to(JTJ+ λI )K = −∇f ▷ Conjugate Gradient Iter. Alg.
while Goldstein Conditions Are Not Satisfied do

K ←− K prev + αS
fnew ←− 1

2∥M−K∥2
α←− α/2

end while
if f - fnew < ϵ then

break
end if

end for
end function
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Cyclic Invariance in Fast Matrix Multiplication Algorithms

Classic Strassen

M1 M2 M3 M4 M5 M6 M7

A11 1 0 1 0 1 −1 0
A12 0 1 0 0 0 1 0
A21 0 0 0 0 1 0 1
A22 1 1 0 1 0 0 −1
B11 1 1 0 −1 0 1 0
B12 0 0 0 1 0 0 1
B21 0 0 1 0 0 1 0
B22 1 0 −1 0 1 0 1

C11 1 0 0 1 −1 0 1
C21 0 0 1 0 1 0 0
C12 0 1 0 1 0 0 0
C22 1 −1 1 0 0 1 0

r = 7

Permuted Strassen

M1 M2 M3 M4 M5 M6 M7

A11 1 0 0 0 1 1 −1
A12 0 1 0 0 0 0 1
A21 0 0 0 1 1 0 0
A22 1 1 1 −1 0 0 0

B11 1 1 −1 0 0 0 1
B12 0 0 1 1 0 0 0
B21 0 0 0 0 0 1 1
B22 1 0 0 1 1 −1 0

C11 1 0 1 1 −1 0 0
C21 0 0 0 0 1 1 0
C12 0 1 1 0 0 0 0
C22 1 −1 0 0 0 1 1

r = 7, rs = 1, rc = 2
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Different Symmetric Ranks

Pemuted Strassen rs = 1, rc = 2

M1 M2 M3 M4 M5 M6 M7

A11 1 0 0 0 1 1 −1
A12 0 1 0 0 0 0 1
A21 0 0 0 1 1 0 0
A22 1 1 1 −1 0 0 0

B11 1 1 −1 0 0 0 1
B12 0 0 1 1 0 0 0
B21 0 0 0 0 0 1 1
B22 1 0 0 1 1 −1 0

C11 1 0 1 1 −1 0 0
C21 0 0 0 0 1 1 0
C12 0 1 1 0 0 0 0
C22 1 −1 0 0 0 1 1

Variant Strassen rs = 4, rc = 1

M1 M2 M3 M4 M5 M6 M7

A11 1 0 0 0 0 1 0
A12 0 0 −1 1 0 1 −1
A21 0 1 0 −1 −1 −1 0
A22 0 1 1 −1 0 −1 0

B11 1 0 0 0 0 0 1
B12 0 0 −1 1 −1 0 1
B21 0 1 0 −1 0 −1 −1
B22 0 1 1 −1 0 0 −1
C11 1 0 0 0 1 0 0
C21 0 0 −1 1 1 −1 0
C12 0 1 0 −1 −1 0 −1
C22 0 1 1 −1 −1 0 0
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Adapting the CP DGN Algorithm

We now wish to search for algorithms with Cyclic Invariant structure

a1

b1

c1

a2

b2

c2

. . .

. . .

. . .

ar−1

br−1

cr−1

ar

br

cr

SB W U V n2

SA U V W n2

SC

rs

V

rc

W

rc

r = rs + 3rc

U

rc

n2
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The Chickenfeet

S1

S1

S1

+ · · · +

srs

srs

srs

+

u1

v1

w1

+ · · · +

urc

vrc

wrc

+

w1

u1

v1

+ · · · +

wrc

urc

vrc

+

v1

w1

u1

+ · · · +

brc

wrc

urc

f (v) =
1

2

m∑
i

n∑
j

p∑
k

(
xijk −

rs∑
q

siqsjqskq −
rc∑
l

(uilvjlwkl + wilujlvkl + vilwjlukl)

)2
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What does that mean Mathematically?

Now we impose the following structure on our algorithm

A = [ S U V W ]
B = [ S W U V ]
C = [ S V W U ]

v = vec

 A
B
C

 =

 vec(A)
vec(B)
vec(C)

 ∈ R3nr v = vec




S
U
V
W


 =


vec(S)
vec(U)
vec(V)
vec(W)

 ∈ Rnr

Exaustively, this is only 228. Then we adapt our gradient and how to apply (J⊺J+ λI)dk with
this structure.
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Details of Adapting the CP DGN Algorithm

The gradients become this:

∂f
∂S = 3·

(
S(S⊺S∗S⊺S)+U(V⊺S∗W⊺S)+V(U⊺S∗W⊺S)+W(U⊺S∗V⊺S)

−(X(1)+X(2)+X(3))(S⊙S)
)

∂f
∂U = 3·

(
S(S⊺V∗S⊺W)+U(V⊺V∗W⊺W)+V(W⊺V∗U⊺W)+W(U⊺V∗V⊺W)

)
−X(1)(V⊙W)−X(2)(W⊙V)−X(3)(V⊙W)

∂f
∂V = 3·

(
S(S⊺U∗S⊺W)+U(W⊺U∗V⊺W)+V(U⊺U∗W⊺W)+W(V⊺U∗U⊺W)

)
−X(1)(W⊙U)−X(2)(U⊙W)−X(3)(W⊙U)

∂f
∂W = 3·

(
S(S⊺U∗S⊺V)+U(V⊺U∗W⊺V)+V(W⊺U∗U⊺V)+W(U⊺U∗V⊺V)

)
−X(1)(U⊙V)−X(2)(V⊙U)−X(3)(U⊙V)
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Details of Adapting the CP DGN Algorithm Cont.

Applying (J⊺J+ λId)k become this (there are 12 mode of these):

J⊺UJSvec(Ks) = 3·vec
(
KS(S

⊺V)∗(S⊺W)+S
(
(K⊺

SW)∗(S⊺V)+(K⊺
SV)∗(S

⊺W)
))

J⊺UJUvec(Ku) = 3·vec
(
KU(V

⊺V)∗(W⊺W)+V(K⊺
UW)∗(W⊺V)+W(K⊺

UV)∗(V
⊺W)
)

J⊺UJVvec(Kv) = 3·vec
(
KV(W

⊺V)∗(U⊺W)+W(K⊺
VW)∗(U⊺V)+U(K⊺

VV)∗(W
⊺W)
)

J⊺UJWvec(Kw) = 3·vec
(
KW(U⊺V)∗(V⊺W)+U(K⊺

WW)∗(V⊺V)+V(K⊺
WV)∗(U⊺W)

)
With all of these modifications we implement our new algorithm, called it CI CP DGN
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Our Solutions

n = 2, r = 4 S n = 3, r = 23 S n = 4, r = 49 S n = 5 S

rs = 1, rc = 2 1000s rs = 2, rc = 7 100s rs = 1, rc = 16 6 r = 109 2
rs = 4, rc = 1 1000s rs = 5, rc = 6 100s rs = 4, rc = 15 0 r = 93 -

rs = 8, rc = 5 - rs = 7, rc = 14 - r = 91 0
rs = 11, rc = 4 100s rs = 10, rc = 13 - · · · -
rs = 14, rc = 3 - rs = 13, rc = 12 2
rs = 17, rc = 2 - rs = 16, rc = 11 32
rs = 20, rc = 1 - · · · -
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Conclusions - Project 2

These algorithms are hard to find, we make it easier

Current work is done to impose further structure in the algorithms we have.

Once that is automated, we want to modify CI CP DGN to have these Structures
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Parallel Higher-Order Orthogonal Iteration for Tucker
Decomposition with Rank Adaptivity

Department of Computer Science

João Pinheiro, Grey Ballard, Aditya Devarakonda
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The Tucker Decomposition

T
≈

A G B

C

T ≈ JG;A,B,CK = G ×1 A×2 B×3 C

tijk ≈
q∑

α=1

r∑
β=1

s∑
γ=1

gαβγ · aiαbjβciγ , ∀(i , j , k) ∈ [m]⊗ [n]⊗ [p]
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The Tucker Decomposition Trade-Off

To know compression beforehand, we specify
the size of the core tensor G.

compression
ratio =

mnp

qrs + qm + nr + sp
≈ mnp

qrs

This is the rank-specified formulation, where
we cannot say in advance what the error
will be

To know accuracy beforehand, we specify the
maximum relative error threshold

||X−JG;U,V,WK||
||X || ≤ ϵ

This is the error-specified formulation, where
we cannot say in advance what the
compression will be
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The Two Protagonists

function STHOSVD(X , r or ϵ)
A← LLSV (X(1), r1 or ϵ)
G ← X ×1 A

⊺

B← LLSV (G(2), r2 or ϵ)
G ← G ×1 B

⊺

C← LLSV (G(3), r3 or ϵ)
G ← G ×3 C

⊺

return JG;A,B,CK
end function

function U = LLSV(JY , r or ϵ)
S = Y · Y⊺

[U,Λ] = eig(S)
return U(:, 1 : r)

end function

LLSV → Left Leading Singular Vectors

function HOOI(X , r)
Initialize A,B,C randomly
for Max Iterations do
Y = X ×2 B⊺ ×3 C⊺

A← LLSV (Y(1), r1)

Y = X ×1 A⊺ ×3 C⊺

B← LLSV (Y(2), r2)

Y = X ×1 A⊺ ×2 B⊺

C← LLSV (Y(3), r3)
end for
G ← Y ×3 C⊺

return JG;A,B,CK
end function
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Optimization 1: Dimension Tree Memoization

function HOOI(X , r)
Initialize A,B,C randomly
for Max Iterations do
Y = X ×2 B⊺ ×3 C⊺

A← LLSV (Y(1), r1)

Y = X ×1 A⊺ ×3 C⊺

B ← LLSV (Y(2), r2)

Y = X ×1 A⊺ ×2 B⊺

C ← LLSV (Y(3), r3)
end for
G ← Y ×3 C⊺

return JG;A,B,CK
end function

function HOOI-DT(X , r)
Initialize A,B,C randomly
for Max Iterations do
Ytemp = X ×3 C⊺

Y = Ytemp ×2 B⊺

A← LLSV (Y(1), r1)

Y = Ytemp ×1 A⊺

B← LLSV (Y(2), r2)

Y = X ×1 A⊺ ×2 B⊺

C← LLSV (Y(3), r3)
end for
G ← Y ×3 C⊺

return JG;A,B,CK
end function
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Optimization 1: Dimension Tree Memoization
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C ← LLSV (Y(3), r3)
end for
G ← Y ×3 C⊺

return JG;A,B,CK
end function

function HOOI-DT(X , r)
Initialize A,B,C randomly
for Max Iterations do
Ytemp = X ×3 C⊺

Y = Ytemp ×2 B⊺

A← LLSV (Y(1), r1)

Y = Ytemp ×1 A⊺

B← LLSV (Y(2), r2)

Y = X ×1 A⊺ ×2 B⊺

C← LLSV (Y(3), r3)
end for
G ← Y ×3 C⊺

return JG;A,B,CK
end function

João Pinheiro Wake Forest University 42 / 61



Optimization 1: Dimension Tree Memoization
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function HOOI-DT(X , r)
Initialize A,B,C randomly
for Max Iterations do
Ytemp = X ×3 C⊺

Y = Ytemp ×2 B⊺

A← LLSV (Y(1), r1)

Y = Ytemp ×1 A⊺

B← LLSV (Y(2), r2)

Y = X ×1 A
⊺ ×2 B⊺

C← LLSV (Y(3), r3)
end for
G ← Y ×3 C

⊺

return JG;A,B,CK
end function
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Optimization 2: Subspace Iterations

function HOSI(X , r)
Initialize A,B,C randomly
for Max Iterations do
Y = X ×2 B⊺ ×3 C⊺

A← LLSV (Y,A, 1)

Y = X ×1 A⊺ ×3 C⊺

B← LLSV (Y,B, 2)

Y = X ×1 A⊺ ×2 B⊺

C← LLSV (Y,C, 3)
end for
G ← Y ×3 C

⊺

return JG;A,B,CK
end function

function U = LLSV(Y,U, n)
G = Y ×n U⊺

U = Contract(Y,G, n) ▷ TTT
[U, ˜] = qr(U)

end function

function U = LLSV(Y, r or ϵ)
S = Y · Y⊺

[U,Λ] = eig(S)
return U(:, 1 : r)

end function
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Higher Order Subspace Iteration with Dimension Tree (HOSI-DT)

Input: Tensor X ∈ Rn1×···×nd

Ranks r = r1, . . . , rd
Output: TTensor T of ranks r with T ≈ X
function HOSI-DT(X , U, m, r)

if length(m) == 1 then
G = X ×m U⊺

m ▷ Update Core
Um = Y(m) · G⊺

(m) ▷ Contract Two Tensors on Mode k

[Um, ˜] = qr(Um) ▷ Orthogonalize Factor Matrix
else

Equally partition m = [µ, η]
Xleft = X ×i Ui ,∀i ∈ η
[G,U] = HOSI-DT(Xleft,U, µ, r) ▷ Left Recursion
Xright = X ×i Ui ,∀i ∈ µ
[G,U] = HOSI-DT(Xright,U, η, r) ▷ Right Recursion

end if
end function
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Transforming HOOI into an error-specified algorithm

min||X − G ×1 A×2 B×3 C3||
subject to G ∈ Rq×r×s ,A ∈ Rm×q,B ∈ Rn×r ,C ∈ Rp×s

Now suppose we have a relative error tolerance of how accurate we want our approximation to be.
Then the approximation must satisfy:

||X − T ||
||X || ≤ ϵ

||X − T ||2 ≤ ϵ2 · ||X ||2
||X ||2 − ||G||2 ≤ ϵ2 · ||X ||2

(1− ϵ2) · ||X ||2 ≤ ||G||2
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Transforming HOOI into an error-specified algorithm

min||X − G ×1 A×2 B×3 C3|| (1)

subject to G ∈ Rq×r×s ,A ∈ Rm×q,B ∈ Rn×r ,C ∈ Rp×s

Now suppose we have a relative error tolerance of how accurate we want our approximation to be.
Then the approximation must satisfy:

(1− ϵ2) · ||X ||2 ≤ ||G||2 (2)

Then we know if our tucker tensor satisfies the error tolerance solely on ||G||2. If the error tolerance is
satisfied, we can find a smaller tucker representation that still satisfies the error by analyzing the core
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Visualizing Adaptive HOOI

min
r
||G(1 : r)||2 (3)

subject to ||G(1 : r)||2 ≥ (1− ϵ2)||X ||2

T
≈

A G B

C
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Adaptive HOOI

function AdaptiveHOOI(X , r, ϵ)
Initialize A,B,C randomly
for Maximum Number of Iterations do
Y = X ×2 B⊺ ×3 C⊺

A← LLSV(Y(1), r1)

Y = X ×1 A⊺ ×3 C⊺

B ← LLSV(Y(2), r2)

Y = X ×1 A⊺ ×2 B⊺

C ← LLSV(Y(3), r3)
G ← Y ×3 C⊺

r = performCoreAnalysis(G, ϵ, r)
end for
return JG,U1:d K

end function

function performCoreAnalysis(G, ϵ, r)
if ||G||2 ≥ (1− ϵ2)||X ||2 then

Find r = arg min ||G(1 : r)||2
subject to ||G(1 : r)||2 ≥ (1− ϵ2)||X ||2

Truncate G,A,B,C according to r
else

r = α r
Increase columns of A,B,C according to r

end if
return r

end function
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TuckerMPI and Parallel Tensor Distribution

Existing C++/MPI library

Implements deterministic STHOSVD

Has efficient sequential and parallel
kernels for SVD and TTM

For d-way tensor, we use d-way processor grid
with Cartesian block distribution

← n2 →

←
n
1
→

←
n 3
→

Example: p1 × p2 × p3 = 3× 5× 2

Local tensor size:
n1
p1
× n2

p2
× n3

p3
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Parallel Scaling of Synthetic Data in Single Precision
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Breakdown of 3-way Parallel Scaling of Synthetic Data in Single Precision
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Breakdown of 4-way Parallel Scaling of Synthetic Data in Single Precision
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Miranda Data Set (3072× 3072× 3072) - 1024 Cores - 115 GB
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Miranda Data Set (3072× 3072× 3072) - 1024 Cores - 115 GB
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HCCI Data Set (672× 672× 33× 626) - 128 Cores - 75 GB
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HCCI Data Set (672× 672× 33× 626) - 128 Cores - 75 GB
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SP Data Set (500× 500× 500× 33× 400) - 2048 Cores - 4.4 TB
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SP Data Set (500× 500× 500× 33× 400) - 2048 Cores - 4.4 TB
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Conclusions - Project 2

Dimension Tree optimizes TTM operations on HOOI

Subspace Iteration optimizes LLSV operations on HOOI

AdaptiveHOOI removes rank-specified constraint on HOOI

https://gitlab.com/tensors/TuckerMPI

This work will be soon be published to SC25 two days ago
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