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The Tucker Decomposition
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The Tucker Decomposition Trade-Off

Jodo Pinheiro Wake Forest University 2/18



The Tucker Decomposition Trade-Off

Compression

To know compression beforehand, we specify
the size of the core tensor G.

compression mnp mnp
ratio = ~
qrs +qgm -+ nr + sp qrs

This is the rank-specified formulation, where
cannot say in advance what the error will be
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The Tucker Decomposition Trade-Off

Compression

To know compression beforehand, we specify ~ To know accuracy beforehand, we specify the

the size of the core tensor G. maximum relative error threshold
compression mnp mnp [|X—{G;U,V,W}|| <e
ratio [[X1] -

N qrs +qgm —+ nr + sp - qrs
o N ] This is the error-specified formulation, where
This is the rank-specified formulation, where cannot say in advance what the compression

cannot say in advance what the error will be will be
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The Two Protagonists

function STHOSVD(X, r or €)
A < LLSV(Xqy, 1 or €)
G+ X x1 AT

B < LLSV(G(ay, 2 or €)
G+ Gx1 BT

C < LLSV(Gz), 13 or €)
G+ Gx3CT
return {G; A, B, C}

end function
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The Two Protagonists

function STHOSVD(X, r or €)
A < LLSV(Xqy, 1 or €)
G+ X x1 AT

B < LLSV(G(ay, 2 or €)
G+ Gx1 BT

C < LLSV(Gz), 13 or €)
G« Gx3CT
return {G; A, B, C}

end function

function U = LLSV(Y,r or ¢)
S=Y-YT
[U,A] = eig(5)
return U(:, 1:r)

end function

LLSV — Left Leading Singular vectors
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The Two Protagonists

function STHOSVD(X, r or €)
A LLSV(X),r1 or €) function HOOI(X, r)

G+ X x AT Initialize A, B, C randomly
for Max Iterations do
B < LLSV(G(ay, 2 or €) Y =X x5 BT x3 CT
G+ GxyBT A<+ LLSV(Y), n)
C < LLSV(Gz), 13 or €) V=X x; AT x5 CT
G Gx3(CT B+ LLSV(Y(2), 1)
return {G; A, B, C}
end function Y = X x; AT x, BT
function U = LLSV(Y,r ore) C « LLSV(Y(3),13)
S=Y.YT end for
[U,A] = eig(5) G+ Yx3CT
return U(:, 1:r) return {G; A, B, C}
end function end function

LLSV — Left Leading Singular vectors
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Optimization 1: Dimension Tree Memoization

function HOOI(X, r)
Initialize A, B, C randomly
for Max Iterations do

y =X X9 BT X3 CcT
A+ LLSV( Y(l), r1)

y =X X1 AT X3 cT
B« LLSV(Y), 12)

j)i =X X1 AT X2 BT
C < LLSV(Y(3), 13)
end for
g < y X3 CT
return {G; A, B, C}
end function
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Optimization 1: Dimension Tree Memoization

function HOOI-DT(X, r)
Initialize A, B, C randomly
for Max Iterations do

function HOOI(X, r)
Initialize A, B, C randomly
for Max lIterations do

— T
V=X x,BT x3CT itempy_)(f;
= Jtemp X2
A LLSV(Y(I)v fl) A LLSV(Y(l), rl)
y =X X1 AT X3 cT
y = ytemp X1 AT
B tovlve, ) B+ LLSV(Y(a. 1)
y =X X1 AT X2 BT

y = X X1 AT X2 BT
C < LLSV(Y(3), 13) C <« LLSV(Y(3), 1)

end for end for
g(—yX3 CT T
return {G; A, B, C} G« YVx3C

return {G; A, B, C}

end function .
end function
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Optimization 1: Dimension Tree Memoization

function HOOI-DT(X, r)

{1,2,3} Initialize A, B, C randomly
_— g for Max lterations do
{1,2} {3} ytemp =X X3 cT
/ AN Y= ytemp X2 BT
a 3 A LLSV(Yy, n)

30

y = ytemp X1 AT
B« LLSV(Y(), 1)

JJ =X X1 AT X2 BT
C <« LLSV(Y(3),13)
end for
G+ Yx3CT
return {G; A, B, C}
end function

Number of TTMs
N
o

—
o

Number of Dimensions
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Optimization 2: Subspace Iterations

function HOSI(X, r)
Initialize A, B, C randomly
for Max Iterations do

Y =X x, BT X3 CcT
A+ LLSV(Y, A1)

y =X X1 AT X3 cT
B« LLSV(Y,B,2)

y =X X1 AT X2 BT
C+ LLSV(Y,C,3)
end for
G+ Yx3CT
return {G; A, B, C}
end function
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Optimization 2: Subspace Iterations

function HOSI(X, r)
Initialize A, B, C randomly
for Max Iterations do

Y= X %y BT x5 CT function U = LLSV (), U, n)
= 2 3

g = y Xn ur
A LLSV(Y, A1) U = Contract(Y, G, n) >TTT
[U,~] = ar(V)

y:XX1ATX3CT

£ .
B« LLSV(Y,B,2) end function

function U = LLSV(Y,r or¢)

T s
C+ LLSV(Y,C,3) [U,A] = eig(5)
end for return U(:, 1:r)

G+ Yx3CT end function

return {G; A, B, C}
end function
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Higher Order Subspace Iteration with Dimension Tree (HOSI-DT)

Input: Tensor X' € R™m > *nd
Ranksr =r,...,rgq
Output: TTensor T of ranks r with 7 ~ X
function HOSI-DT(X, U, m, r)
if length(m) == 1 then

G=Xxn UL > Update Core

Un=Ym - G(Tm) > Contract Two Tensors on Mode k

[Um,~] = ar(Un) > Orthogonalize Factor Matrix
else

Equally partition m = [u, 7]
Xere = X x; U;,Vien

[G,U] = HOSI-DT(Xiet, U, 1, 1) > Left Recursion

Xiight = X x; U, Viep

[G,U] = HOSI-DT(X;ight, U, n, 1) > Right Recursion
end if

end function
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Transforming HOOI into an error-specified algorithm

minHX — g X1 A X2 B X3 C3H
subject to G € R9*™** A c R™9 B € R"™", C € RP**

Now suppose we have a relative error tolerance of how accurate we want our approximation to be.
Then the approximation must satisfy:

=7l
1]

I =TI < ||

11 = 191 < €& |12

(1—e)- X2 < 9]
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Transforming HOOI into an error-specified algorithm

minHX—gxlezBX3 C3H (1)
subject to G € R9*™* Ac R™9, B e R™" C € RP**

Now suppose we have a relative error tolerance of how accurate we want our approximation to be.
Then the approximation must satisfy:

(1—&)-[1XI17 < IgI1” ()

Then we know if our tucker tensor satisfies the error tolerance solely on ||G||. If the error tolerance is
satisfied, we can find a smaller tucker representation that still satisfies the error by analyzing the core
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Visualizing Adaptive HOOI

min [|G(1 : r)||? (3)
subject to ||G(1: r)[|? > (1 — €2)]|X|?

—
T !
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Adaptive HOOI

function ApDAPTIVEHOOI(X, r, €)
Initialize A, B, C randomly

for Maximum Number of Iterations do function PERFORMCOREANALYSIS(G, €, t)
Y=Xx3BT x3CT if ||G]12 > (1 — €?)||X]||? then
A« LLSV(Y(1y, 1) Find r = arg min ||G(1 : r)||2

subject to ||G(1: N2 > (1 — 2)|X|P
Y =X x1 AT x3CT

B + LLSV(Y(2),2) Truncate G, A, B, C according to r
else
Y =X x1 AT xo BT r=ar
C + LLSV(Y(3)7 r3) Increase columns of A, B, C according to r
G« Yx3CT end if
r = performCoreAnalysis(G, ¢, r) return r
end for end function

return [G, Uy.4]
end function
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TuckerMPI and Parallel Tensor Distribution

For d-way tensor, we use d-way processor grid
with Cartesian block distribution

TUCKERMPI

1
L . .
o Existing C++/MPI library <
o Implements deterministic STHOSVD s ‘
o Has efficient sequential and parallel
kernels for SVD and TTM Example: p1 X pp x p3 =3 x5x2
Local tensor size: * x 2 5 B
pr P2 Pp3
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Parallel Scaling of Synthetic Data In Single Precision

3750 x 3750 x 3750 — 30 x 30 x 30
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Parallel Scaling of Synthetic Data In Single Precision
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Breakdown of 3way Parallel Scaling of Synthetic Data in Single Precision
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Breakdown of 4way Parallel Scaling of Synthetic Data in Single Precision
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Homogeneous Charge Compression Ignition (HCCI) Data Set

(672 x 672 x 32 X 626)
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Miranda Data Set (3072 x 3072 x 3072)

Time vs Error

Size vs Error
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Conclusions, Closing Remarks, and Plug

Dimension Tree optimizes TTM operations on HOOI

Subspace Iteration optimizes LLSV operations on HOOI

AdaptiveHOOI removes rank-specified constraint on
HOOI

https://gitlab.com/tensors/TuckerMPI

This work will be soon be published to arXiv with more
detail
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https://users.wfu.edu/ballard/pdfs/tensor_textbook.pdf
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Conclusions, Closing Remarks, and Plug

—— - - TENSOR
@ Dimension Tree optimizes TTM operations on HOOI
ol DECOMPOSITIONS
@ Subspace lteration optimizes operations on
P P P ZUI DATA
@ AdaptiveHOOI removes rank-specified constraint on
HOOI

@ https://gitlab.com/tensors/TuckerMPI

@ This work will be soon be published to arXiv with more
detail

@ Available August 2025 from Cambridge University Press:

@ https://users.wfu.edu/ballard/pdfs/tensor_ Grey Ballard &
textbook.pdf Tamara G. Kolda
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