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The Tucker Decomposition

T
≈

A G B

C

T ≈ {G;A,B,C} = G ×1 A×2 B ×3 C

tijk ≈
q∑

α=1

r∑
β=1

s∑
γ=1

gαβγ · aiαbjβciγ , ∀(i , j , k) ∈ [m]⊗ [n]⊗ [p]
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The Tucker Decomposition Trade-Off

To know compression beforehand, we specify
the size of the core tensor G.

compression
ratio =

mnp

qrs + qm + nr + sp
≈ mnp

qrs

This is the rank-specified formulation, where
cannot say in advance what the error will be

To know accuracy beforehand, we specify the
maximum relative error threshold

||X−{G;U,V ,W }||
||X || ≤ ϵ

This is the error-specified formulation, where
cannot say in advance what the compression
will be
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The Two Protagonists

function STHOSVD(X , r or ϵ)
A← LLSV (X(1), r1 or ϵ)
G ← X ×1 A

⊺

B ← LLSV (G(2), r2 or ϵ)
G ← G ×1 B

⊺

C ← LLSV (G(3), r3 or ϵ)
G ← G ×3 C

⊺

return {G;A,B,C}
end function

function U = LLSV(Y , r or ϵ)
S = Y · Y ⊺

[U,Λ] = eig(S)
return U(:, 1 : r)

end function

LLSV → Left Leading Singular vectors

function HOOI(X , r)
Initialize A,B,C randomly
for Max Iterations do
Y = X ×2 B

⊺ ×3 C
⊺

A← LLSV (Y(1), r1)

Y = X ×1 A
⊺ ×3 C

⊺

B ← LLSV (Y(2), r2)

Y = X ×1 A
⊺ ×2 B

⊺

C ← LLSV (Y(3), r3)
end for
G ← Y ×3 C

⊺

return {G;A,B,C}
end function
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Optimization 1: Dimension Tree Memoization

function HOOI(X , r)
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⊺

B ← LLSV (Y(2), r2)

Y = X ×1 A
⊺ ×2 B

⊺

C ← LLSV (Y(3), r3)
end for
G ← Y ×3 C

⊺

return {G;A,B,C}
end function

function HOOI-DT(X , r)
Initialize A,B,C randomly
for Max Iterations do
Ytemp = X ×3 C

⊺

Y = Ytemp ×2 B
⊺
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Y = Ytemp ×1 A
⊺
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⊺ ×2 B
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Optimization 1: Dimension Tree Memoization
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function HOOI-DT(X , r)
Initialize A,B,C randomly
for Max Iterations do
Ytemp = X ×3 C

⊺
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⊺
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Optimization 2: Subspace Iterations

function HOSI(X , r)
Initialize A,B,C randomly
for Max Iterations do
Y = X ×2 B

⊺ ×3 C
⊺

A← LLSV (Y,A, 1)

Y = X ×1 A
⊺ ×3 C

⊺

B ← LLSV (Y,B, 2)

Y = X ×1 A
⊺ ×2 B

⊺

C ← LLSV (Y,C , 3)
end for
G ← Y ×3 C

⊺

return {G;A,B,C}
end function

function U = LLSV(Y,U, n)
G = Y ×n U

⊺

U = Contract(Y,G, n) ▷ TTT
[U, ˜] = qr(U)

end function

function U = LLSV(Y , r or ϵ)
S = Y · Y ⊺

[U,Λ] = eig(S)
return U(:, 1 : r)

end function

João Pinheiro Wake Forest University 6 / 18



Optimization 2: Subspace Iterations

function HOSI(X , r)
Initialize A,B,C randomly
for Max Iterations do
Y = X ×2 B

⊺ ×3 C
⊺

A← LLSV (Y,A, 1)

Y = X ×1 A
⊺ ×3 C

⊺

B ← LLSV (Y,B, 2)

Y = X ×1 A
⊺ ×2 B

⊺

C ← LLSV (Y,C , 3)
end for
G ← Y ×3 C

⊺

return {G;A,B,C}
end function

function U = LLSV(Y,U, n)
G = Y ×n U

⊺

U = Contract(Y,G, n) ▷ TTT
[U, ˜] = qr(U)

end function

function U = LLSV(Y , r or ϵ)
S = Y · Y ⊺

[U,Λ] = eig(S)
return U(:, 1 : r)

end function

João Pinheiro Wake Forest University 6 / 18



Higher Order Subspace Iteration with Dimension Tree (HOSI-DT)

Input: Tensor X ∈ Rn1×···×nd

Ranks r = r1, . . . , rd
Output: TTensor T of ranks r with T ≈ X
function HOSI-DT(X , U, m, r)

if length(m) == 1 then
G = X ×m U⊺

m ▷ Update Core
Um = Y(m) · G⊺

(m) ▷ Contract Two Tensors on Mode k

[Um, ˜] = qr(Um) ▷ Orthogonalize Factor Matrix
else

Equally partition m = [µ, η]
Xleft = X ×i Ui ,∀i ∈ η
[G,U] = HOSI-DT(Xleft,U, µ, r) ▷ Left Recursion
Xright = X ×i Ui ,∀i ∈ µ
[G,U] = HOSI-DT(Xright,U, η, r) ▷ Right Recursion

end if
end function
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Transforming HOOI into an error-specified algorithm

min||X − G ×1 A×2 B ×3 C3||
subject to G ∈ Rq×r×s ,A ∈ Rm×q,B ∈ Rn×r ,C ∈ Rp×s

Now suppose we have a relative error tolerance of how accurate we want our approximation to be.
Then the approximation must satisfy:

||X − T ||
||X || ≤ ϵ

||X − T ||2 ≤ ϵ2 · ||X ||2
||X ||2 − ||G||2 ≤ ϵ2 · ||X ||2

(1− ϵ2) · ||X ||2 ≤ ||G||2
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Transforming HOOI into an error-specified algorithm

min||X − G ×1 A×2 B ×3 C3|| (1)

subject to G ∈ Rq×r×s ,A ∈ Rm×q,B ∈ Rn×r ,C ∈ Rp×s

Now suppose we have a relative error tolerance of how accurate we want our approximation to be.
Then the approximation must satisfy:

(1− ϵ2) · ||X ||2 ≤ ||G||2 (2)

Then we know if our tucker tensor satisfies the error tolerance solely on ||G||2. If the error tolerance is
satisfied, we can find a smaller tucker representation that still satisfies the error by analyzing the core
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Visualizing Adaptive HOOI

min
r
||G(1 : r)||2 (3)

subject to ||G(1 : r)||2 ≥ (1− ϵ2)||X ||2

T
≈

A G B

C
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Adaptive HOOI

function AdaptiveHOOI(X , r, ϵ)
Initialize A,B,C randomly
for Maximum Number of Iterations do
Y = X ×2 B⊺ ×3 C⊺

A← LLSV(Y(1), r1)

Y = X ×1 A⊺ ×3 C⊺

B ← LLSV(Y(2), r2)

Y = X ×1 A⊺ ×2 B⊺

C ← LLSV(Y(3), r3)
G ← Y ×3 C⊺

r = performCoreAnalysis(G, ϵ, r)
end for
return [G,U1:d ]

end function

function performCoreAnalysis(G, ϵ, r)
if ||G||2 ≥ (1− ϵ2)||X ||2 then

Find r = arg min ||G(1 : r)||2
subject to ||G(1 : r)||2 ≥ (1− ϵ2)||X ||2

Truncate G,A,B,C according to r
else

r = α r
Increase columns of A,B,C according to r

end if
return r

end function

João Pinheiro Wake Forest University 11 / 18



TuckerMPI and Parallel Tensor Distribution

Existing C++/MPI library

Implements deterministic STHOSVD

Has efficient sequential and parallel
kernels for SVD and TTM

For d-way tensor, we use d-way processor grid
with Cartesian block distribution

← n2 →

←
n
1
→

←
n 3
→

Example: p1 × p2 × p3 = 3× 5× 2

Local tensor size:
n1
p1
× n2

p2
× n3

p3

João Pinheiro Wake Forest University 12 / 18



Parallel Scaling of Synthetic Data In Single Precision
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Breakdown of 3way Parallel Scaling of Synthetic Data in Single Precision
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Breakdown of 4way Parallel Scaling of Synthetic Data in Single Precision
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Homogeneous Charge Compression Ignition (HCCI) Data Set
(672× 672× 32× 626)
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Miranda Data Set (3072× 3072× 3072)
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Conclusions, Closing Remarks, and Plug

Dimension Tree optimizes TTM operations on HOOI

Subspace Iteration optimizes LLSV operations on HOOI

AdaptiveHOOI removes rank-specified constraint on
HOOI

https://gitlab.com/tensors/TuckerMPI

This work will be soon be published to arXiv with more
detail

Available August 2025 from Cambridge University Press:

https://users.wfu.edu/ballard/pdfs/tensor_

textbook.pdf

TENSOR
DECOMPOSITIONS

Grey Ballard &
Tamara G. Kolda

DATA
SCIENCE
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