
Parallel Higher-Order Orthogonal Iteration for Tucker
Decomposition with Rank Adaptivity

Department of Computer Science

João Pinheiro, Grey Ballard, Aditya Devarakonda

Friday, March 7th 2024

João Pinheiro Wake Forest University 1 / 18

The Tucker Decomposition

T
≈

A G B

C

T ≈ {G;A,B,C} = G ×1 A×2 B ×3 C

tijk ≈
q∑

α=1

r∑
β=1

s∑
γ=1

gαβγ · aiαbjβciγ , ∀(i , j , k) ∈ [m]⊗ [n]⊗ [p]

João Pinheiro Wake Forest University 1 / 18

The Tucker Decomposition Trade-Off

To know compression beforehand, we specify
the size of the core tensor G.

compression
ratio =

mnp

qrs + qm + nr + sp
≈ mnp

qrs

This is the rank-specified formulation, where
cannot say in advance what the error will be

To know accuracy beforehand, we specify the
maximum relative error threshold

||X−{G;U,V ,W }||
||X || ≤ ϵ

This is the error-specified formulation, where
cannot say in advance what the compression
will be

João Pinheiro Wake Forest University 2 / 18

The Tucker Decomposition Trade-Off

To know compression beforehand, we specify
the size of the core tensor G.

compression
ratio =

mnp

qrs + qm + nr + sp
≈ mnp

qrs

This is the rank-specified formulation, where
cannot say in advance what the error will be

To know accuracy beforehand, we specify the
maximum relative error threshold

||X−{G;U,V ,W }||
||X || ≤ ϵ

This is the error-specified formulation, where
cannot say in advance what the compression
will be

João Pinheiro Wake Forest University 2 / 18

The Tucker Decomposition Trade-Off

To know compression beforehand, we specify
the size of the core tensor G.

compression
ratio =

mnp

qrs + qm + nr + sp
≈ mnp

qrs

This is the rank-specified formulation, where
cannot say in advance what the error will be

To know accuracy beforehand, we specify the
maximum relative error threshold

||X−{G;U,V ,W }||
||X || ≤ ϵ

This is the error-specified formulation, where
cannot say in advance what the compression
will be

João Pinheiro Wake Forest University 2 / 18

The Two Protagonists

function STHOSVD(X , r or ϵ)
A← LLSV (X(1), r1 or ϵ)
G ← X ×1 A

⊺

B ← LLSV (G(2), r2 or ϵ)
G ← G ×1 B

⊺

C ← LLSV (G(3), r3 or ϵ)
G ← G ×3 C

⊺

return {G;A,B,C}
end function

function U = LLSV(Y , r or ϵ)
S = Y · Y ⊺

[U,Λ] = eig(S)
return U(:, 1 : r)

end function

LLSV → Left Leading Singular vectors

function HOOI(X , r)
Initialize A,B,C randomly
for Max Iterations do
Y = X ×2 B

⊺ ×3 C
⊺

A← LLSV (Y(1), r1)

Y = X ×1 A
⊺ ×3 C

⊺

B ← LLSV (Y(2), r2)

Y = X ×1 A
⊺ ×2 B

⊺

C ← LLSV (Y(3), r3)
end for
G ← Y ×3 C

⊺

return {G;A,B,C}
end function

João Pinheiro Wake Forest University 3 / 18

The Two Protagonists

function STHOSVD(X , r or ϵ)
A← LLSV (X(1), r1 or ϵ)
G ← X ×1 A

⊺

B ← LLSV (G(2), r2 or ϵ)
G ← G ×1 B

⊺

C ← LLSV (G(3), r3 or ϵ)
G ← G ×3 C

⊺

return {G;A,B,C}
end function

function U = LLSV(Y , r or ϵ)
S = Y · Y ⊺

[U,Λ] = eig(S)
return U(:, 1 : r)

end function

LLSV → Left Leading Singular vectors

function HOOI(X , r)
Initialize A,B,C randomly
for Max Iterations do
Y = X ×2 B

⊺ ×3 C
⊺

A← LLSV (Y(1), r1)

Y = X ×1 A
⊺ ×3 C

⊺

B ← LLSV (Y(2), r2)

Y = X ×1 A
⊺ ×2 B

⊺

C ← LLSV (Y(3), r3)
end for
G ← Y ×3 C

⊺

return {G;A,B,C}
end function

João Pinheiro Wake Forest University 3 / 18

The Two Protagonists

function STHOSVD(X , r or ϵ)
A← LLSV (X(1), r1 or ϵ)
G ← X ×1 A

⊺

B ← LLSV (G(2), r2 or ϵ)
G ← G ×1 B

⊺

C ← LLSV (G(3), r3 or ϵ)
G ← G ×3 C

⊺

return {G;A,B,C}
end function

function U = LLSV(Y , r or ϵ)
S = Y · Y ⊺

[U,Λ] = eig(S)
return U(:, 1 : r)

end function

LLSV → Left Leading Singular vectors

function HOOI(X , r)
Initialize A,B,C randomly
for Max Iterations do
Y = X ×2 B

⊺ ×3 C
⊺

A← LLSV (Y(1), r1)

Y = X ×1 A
⊺ ×3 C

⊺

B ← LLSV (Y(2), r2)

Y = X ×1 A
⊺ ×2 B

⊺

C ← LLSV (Y(3), r3)
end for
G ← Y ×3 C

⊺

return {G;A,B,C}
end function

João Pinheiro Wake Forest University 3 / 18

Optimization 1: Dimension Tree Memoization

function HOOI(X , r)
Initialize A,B,C randomly
for Max Iterations do
Y = X ×2 B

⊺ ×3 C
⊺

A← LLSV (Y(1), r1)

Y = X ×1 A
⊺ ×3 C

⊺

B ← LLSV (Y(2), r2)

Y = X ×1 A
⊺ ×2 B

⊺

C ← LLSV (Y(3), r3)
end for
G ← Y ×3 C

⊺

return {G;A,B,C}
end function

function HOOI-DT(X , r)
Initialize A,B,C randomly
for Max Iterations do
Ytemp = X ×3 C

⊺

Y = Ytemp ×2 B
⊺

A← LLSV (Y(1), r1)

Y = Ytemp ×1 A
⊺

B ← LLSV (Y(2), r2)

Y = X ×1 A
⊺ ×2 B

⊺

C ← LLSV (Y(3), r3)
end for
G ← Y ×3 C

⊺

return {G;A,B,C}
end function

João Pinheiro Wake Forest University 4 / 18

Optimization 1: Dimension Tree Memoization

function HOOI(X , r)
Initialize A,B,C randomly
for Max Iterations do
Y = X ×2 B

⊺ ×3 C
⊺

A← LLSV (Y(1), r1)

Y = X ×1 A
⊺ ×3 C

⊺

B ← LLSV (Y(2), r2)

Y = X ×1 A
⊺ ×2 B

⊺

C ← LLSV (Y(3), r3)
end for
G ← Y ×3 C

⊺

return {G;A,B,C}
end function

function HOOI-DT(X , r)
Initialize A,B,C randomly
for Max Iterations do
Ytemp = X ×3 C

⊺

Y = Ytemp ×2 B
⊺

A← LLSV (Y(1), r1)

Y = Ytemp ×1 A
⊺

B ← LLSV (Y(2), r2)

Y = X ×1 A
⊺ ×2 B

⊺

C ← LLSV (Y(3), r3)
end for
G ← Y ×3 C

⊺

return {G;A,B,C}
end function

João Pinheiro Wake Forest University 4 / 18

Optimization 1: Dimension Tree Memoization

{1, 2, 3}

{1, 2}

{1} {2}

{3}

3 4 5 6

10

20

30

Number of Dimensions

N
u
m
b
er

of
T
T
M
s

HOOI
HOOI-DT

function HOOI-DT(X , r)
Initialize A,B,C randomly
for Max Iterations do
Ytemp = X ×3 C

⊺

Y = Ytemp ×2 B
⊺

A← LLSV (Y(1), r1)

Y = Ytemp ×1 A
⊺

B ← LLSV (Y(2), r2)

Y = X ×1 A
⊺ ×2 B

⊺

C ← LLSV (Y(3), r3)
end for
G ← Y ×3 C

⊺

return {G;A,B,C}
end function

João Pinheiro Wake Forest University 5 / 18

Optimization 2: Subspace Iterations

function HOSI(X , r)
Initialize A,B,C randomly
for Max Iterations do
Y = X ×2 B

⊺ ×3 C
⊺

A← LLSV (Y,A, 1)

Y = X ×1 A
⊺ ×3 C

⊺

B ← LLSV (Y,B, 2)

Y = X ×1 A
⊺ ×2 B

⊺

C ← LLSV (Y,C , 3)
end for
G ← Y ×3 C

⊺

return {G;A,B,C}
end function

function U = LLSV(Y,U, n)
G = Y ×n U

⊺

U = Contract(Y,G, n) ▷ TTT
[U, ˜] = qr(U)

end function

function U = LLSV(Y , r or ϵ)
S = Y · Y ⊺

[U,Λ] = eig(S)
return U(:, 1 : r)

end function

João Pinheiro Wake Forest University 6 / 18

Optimization 2: Subspace Iterations

function HOSI(X , r)
Initialize A,B,C randomly
for Max Iterations do
Y = X ×2 B

⊺ ×3 C
⊺

A← LLSV (Y,A, 1)

Y = X ×1 A
⊺ ×3 C

⊺

B ← LLSV (Y,B, 2)

Y = X ×1 A
⊺ ×2 B

⊺

C ← LLSV (Y,C , 3)
end for
G ← Y ×3 C

⊺

return {G;A,B,C}
end function

function U = LLSV(Y,U, n)
G = Y ×n U

⊺

U = Contract(Y,G, n) ▷ TTT
[U, ˜] = qr(U)

end function

function U = LLSV(Y , r or ϵ)
S = Y · Y ⊺

[U,Λ] = eig(S)
return U(:, 1 : r)

end function

João Pinheiro Wake Forest University 6 / 18

Higher Order Subspace Iteration with Dimension Tree (HOSI-DT)

Input: Tensor X ∈ Rn1×···×nd

Ranks r = r1, . . . , rd
Output: TTensor T of ranks r with T ≈ X
function HOSI-DT(X , U, m, r)

if length(m) == 1 then
G = X ×m U⊺

m ▷ Update Core
Um = Y(m) · G⊺

(m) ▷ Contract Two Tensors on Mode k

[Um, ˜] = qr(Um) ▷ Orthogonalize Factor Matrix
else

Equally partition m = [µ, η]
Xleft = X ×i Ui ,∀i ∈ η
[G,U] = HOSI-DT(Xleft,U, µ, r) ▷ Left Recursion
Xright = X ×i Ui ,∀i ∈ µ
[G,U] = HOSI-DT(Xright,U, η, r) ▷ Right Recursion

end if
end function

João Pinheiro Wake Forest University 7 / 18

Transforming HOOI into an error-specified algorithm

min||X − G ×1 A×2 B ×3 C3||
subject to G ∈ Rq×r×s ,A ∈ Rm×q,B ∈ Rn×r ,C ∈ Rp×s

Now suppose we have a relative error tolerance of how accurate we want our approximation to be.
Then the approximation must satisfy:

||X − T ||
||X || ≤ ϵ

||X − T ||2 ≤ ϵ2 · ||X ||2
||X ||2 − ||G||2 ≤ ϵ2 · ||X ||2

(1− ϵ2) · ||X ||2 ≤ ||G||2

João Pinheiro Wake Forest University 8 / 18

Transforming HOOI into an error-specified algorithm

min||X − G ×1 A×2 B ×3 C3|| (1)

subject to G ∈ Rq×r×s ,A ∈ Rm×q,B ∈ Rn×r ,C ∈ Rp×s

Now suppose we have a relative error tolerance of how accurate we want our approximation to be.
Then the approximation must satisfy:

(1− ϵ2) · ||X ||2 ≤ ||G||2 (2)

Then we know if our tucker tensor satisfies the error tolerance solely on ||G||2. If the error tolerance is
satisfied, we can find a smaller tucker representation that still satisfies the error by analyzing the core

João Pinheiro Wake Forest University 9 / 18

Visualizing Adaptive HOOI

min
r
||G(1 : r)||2 (3)

subject to ||G(1 : r)||2 ≥ (1− ϵ2)||X ||2

T
≈

A G B

C

João Pinheiro Wake Forest University 10 / 18

Adaptive HOOI

function AdaptiveHOOI(X , r, ϵ)
Initialize A,B,C randomly
for Maximum Number of Iterations do
Y = X ×2 B⊺ ×3 C⊺

A← LLSV(Y(1), r1)

Y = X ×1 A⊺ ×3 C⊺

B ← LLSV(Y(2), r2)

Y = X ×1 A⊺ ×2 B⊺

C ← LLSV(Y(3), r3)
G ← Y ×3 C⊺

r = performCoreAnalysis(G, ϵ, r)
end for
return [G,U1:d]

end function

function performCoreAnalysis(G, ϵ, r)
if ||G||2 ≥ (1− ϵ2)||X ||2 then

Find r = arg min ||G(1 : r)||2
subject to ||G(1 : r)||2 ≥ (1− ϵ2)||X ||2

Truncate G,A,B,C according to r
else

r = α r
Increase columns of A,B,C according to r

end if
return r

end function

João Pinheiro Wake Forest University 11 / 18

TuckerMPI and Parallel Tensor Distribution

Existing C++/MPI library

Implements deterministic STHOSVD

Has efficient sequential and parallel
kernels for SVD and TTM

For d-way tensor, we use d-way processor grid
with Cartesian block distribution

← n2 →

←
n
1
→

←
n 3
→

Example: p1 × p2 × p3 = 3× 5× 2

Local tensor size:
n1
p1
× n2

p2
× n3

p3

João Pinheiro Wake Forest University 12 / 18

Parallel Scaling of Synthetic Data In Single Precision

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
2−2

2−1

20

21

22

23

24

25

26

27

28

29

210

211

212

Number of Cores

T
im

e

3750× 3750× 3750→ 30× 30× 30

HOOI
HOOI-DT

HOSI
HOSI-DT
STHOSVD

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

2−1

20

21

22

23

24

25

26

27

28

29

210

211

Number of Cores

T
im

e

560× 560× 560× 560→ 10× 10× 10× 10

HOOI
HOOI-DT

HOSI
HOSI-DT
STHOSVD

João Pinheiro Wake Forest University 13 / 18

Parallel Scaling of Synthetic Data In Single Precision

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
2−2

2−1

20

21

22

23

24

25

26

27

28

29

210

211

212

Number of Cores

T
im

e

3750× 3750× 3750→ 30× 30× 30

HOOI
HOOI-DT

HOSI
HOSI-DT
STHOSVD

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

2−1

20

21

22

23

24

25

26

27

28

29

210

211

Number of Cores

T
im

e

560× 560× 560× 560→ 10× 10× 10× 10

HOOI
HOOI-DT

HOSI
HOSI-DT
STHOSVD

João Pinheiro Wake Forest University 13 / 18

Breakdown of 3way Parallel Scaling of Synthetic Data in Single Precision

TTM Computation

TTM Communication

Gram/Contraction Computation

Gram/Contraction Communication

Eig/QR

HOOI HOOI-DT HOSI HOSI-DT STHOSVD

0

500

1,000

1,500

2,000

Algorithms

T
im

e

1 Core(s)

HOOI HOOI-DT HOSI HOSI-DT STHOSVD

0

50

100

150

200

250

Algorithms

4096 Core(s)

João Pinheiro Wake Forest University 14 / 18

Breakdown of 4way Parallel Scaling of Synthetic Data in Single Precision

TTM Computation

TTM Communication

Gram/Contraction Computation

Gram/Contraction Communication

Eig/QR

HOOI HOOI-DT HOSI HOSI-DT STHOSVD

0

200

400

600

800

1,000

1,200

Algorithms

T
im

e

1 Core(s)

HOOI HOOI-DT HOSI HOSI-DT STHOSVD

0

0.5

1

1.5

2

Algorithms

4096 Core(s)

João Pinheiro Wake Forest University 15 / 18

Homogeneous Charge Compression Ignition (HCCI) Data Set
(672× 672× 32× 626)

HOSI DT Over

HOSI DT Perfect

HOSI DT Under

STHOSVD

0 200 400 600

0.1

0.01

0.001

Time in Seconds

R
el
at
iv
e
E
rr
or

Time vs Error

0 0.2 0.4 0.6 0.8 1

0.1

0.01

0.001

Size Relative to STHOSVD

Size vs Error

João Pinheiro Wake Forest University 16 / 18

Miranda Data Set (3072× 3072× 3072)

HOSI DT Over

HOSI DT Perfect

HOSI DT Under

STHOSVD

0 100 200 300 400

0.1

0.05

0.01

Time in Seconds

R
el
at
iv
e
E
rr
or

Time vs Error

1 2 3 4

0.1

0.05

0.01

Size Relative to STHOSVD

Size vs Error

João Pinheiro Wake Forest University 17 / 18

Conclusions, Closing Remarks, and Plug

Dimension Tree optimizes TTM operations on HOOI

Subspace Iteration optimizes LLSV operations on HOOI

AdaptiveHOOI removes rank-specified constraint on
HOOI

https://gitlab.com/tensors/TuckerMPI

This work will be soon be published to arXiv with more
detail

Available August 2025 from Cambridge University Press:

https://users.wfu.edu/ballard/pdfs/tensor_

textbook.pdf

TENSOR
DECOMPOSITIONS

Grey Ballard &
Tamara G. Kolda

DATA
SCIENCE
FOR

João Pinheiro Wake Forest University 18 / 18

https://users.wfu.edu/ballard/pdfs/tensor_textbook.pdf
https://users.wfu.edu/ballard/pdfs/tensor_textbook.pdf

Conclusions, Closing Remarks, and Plug

Dimension Tree optimizes TTM operations on HOOI

Subspace Iteration optimizes LLSV operations on HOOI

AdaptiveHOOI removes rank-specified constraint on
HOOI

https://gitlab.com/tensors/TuckerMPI

This work will be soon be published to arXiv with more
detail

Available August 2025 from Cambridge University Press:

https://users.wfu.edu/ballard/pdfs/tensor_

textbook.pdf

TENSOR
DECOMPOSITIONS

Grey Ballard &
Tamara G. Kolda

DATA
SCIENCE
FOR

João Pinheiro Wake Forest University 18 / 18

https://users.wfu.edu/ballard/pdfs/tensor_textbook.pdf
https://users.wfu.edu/ballard/pdfs/tensor_textbook.pdf

