Parallel Rank-Adaptive Higher Order Orthogonal Iteration

Joao Pinheiro Aditya Devarakonda Grey Ballard
Wake Forest University Wake Forest University Wake Forest University
Winston-Salem, USA Winston-Salem, USA Winston-Salem, USA
deolj19@wfu.edu devaraa@wfu.edu ballard@wfu.edu
Abstract for compression, the Tucker format has an advantage that subten-

Higher Order Orthogonal Iteration (HOOI) is an iterative algorithm
that computes a Tucker decomposition of fixed ranks of an input
tensor. In this work we modify HOOI to determine ranks adaptively
subject to a fixed approximation error, apply optimizations to re-
duce the cost of each HOOI iteration, and parallelize the method
in order to scale to large dense datasets. We show that HOOI is
competitive with the Sequentially Truncated Higher Order Singular
Value Decomposition (STHOSVD) algorithm, particularly in cases
of high compression ratios. Our proposed rank-adaptive HOOI can
achieve comparable approximation error to STHOSVD in less time,
sometimes achieving a better compression ratio. We demonstrate
that our parallelization scales well over thousands of cores and
show using three scientific simulation datasets that HOOI outper-
forms STHOSVD in high-compression regimes. For example, for
a 3D fluid-flow simulation dataset, HOOI computed a Tucker de-
composition 82x faster and achieved a compression ratio 50% better
than STHOSVD’s.

CCS Concepts

« Mathematics of computing — Mathematical software per-
formance; « Theory of computation — Massively parallel
algorithms.

Keywords

Tucker decomposition, Subspace iteration, Block coordinate de-
scent, Higher-Order SVD, Parallel algorithms, Dimension trees

ACM Reference Format:

Joao Pinheiro, Aditya Devarakonda, and Grey Ballard. 2025. Parallel Rank-
Adaptive Higher Order Orthogonal Iteration. In The International Conference
for High Performance Computing, Networking, Storage and Analysis (SC °25),
November 16-21, 2025, St Louis, MO, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3712285.3759865

1 Introduction

The Tucker decomposition is a type of low-rank tensor approxi-
mation of multidimensional data that trades off compression ratio
with approximation error. Previous work has shown that Tucker
is particularly effective at compressing datasets arising from sci-
entific simulations occurring in two or three spatial dimensions
and through time, in part because algorithms for computing the
Tucker decomposition can scale to high performance computing
platforms (see, e.g., [1, 3, 4, 6, 8, 10, 11]). When used as a technique

This work is licensed under a Creative Commons Attribution 4.0 International License.
SC °25, St Louis, MO, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1466-5/25/11

https://doi.org/10.1145/3712285.3759865

1800

sors can be efficiently decompressed without reconstructing the full
tensor, which allows for fast visualization of particular time steps,
spatial regions, or quantities of interest. The Tucker decomposition
is a generalization of the truncated singular value decomposition
(SVD) that consists of a core tensor, with as many modes as the
input, and a set of factor matrices. The dimensions of the core ten-
sor are known as the Tucker ranks, and like the truncated SVD,
smaller ranks yield higher compression but larger error. In the rank-
specified formulation of the Tucker approximation problem, we
minimize the error over all Tucker-format tensors of fixed ranks.
In the error-specified formulation, we maximize the compression
ratio subject to the approximation satisfying an error threshold.
As we describe in § 2, a direct algorithm known as Sequentially
Truncated Higher Order SVD (STHOSVD) achieves quasi-optimal
accuracy among decompositions of specified ranks, and it can adap-
tively determine ranks to solve the error-specified formulation
[13, 24]. The Higher Order Orthogonal Iteration (HOOI) algorithm
is an iterative method that solves the rank-specified formulation
of the problem [12, 14, 17]. Conventional wisdom has held that
because STHOSVD solves the rank-specified problem to within
a small factor of the optimal solution, HOOI is useful only to re-
fine STHOSVD’s solution and is typically unnecessary [4, 9, 19].
Based on the observations that (1) a single iteration of HOOI is
computationally cheaper than STHOSVD, particularly when the
compression ratio is high, and (2) when initialized randomly, HOOI
tends to converge to a solution as accurate as that of STHOSVD in
as few as one or two iterations, the goal of this work is to evaluate
the scalability of HOOI to large tensor datasets and compare its
performance with state-of-the-art implementations of STHOSVD.
One of the main limitations of HOOI is that it solves the rank-
specified formulation of the Tucker approximation problem, but it
does not solve the error-specified formulation. We propose in § 3.2
a rank-adaptive variant of HOOI that does solve the error-specified
formulation. Our approach is based on incrementally expanding
the Tucker ranks over HOOI iterations in order to satisfy the er-
ror threshold and then, once it is satisfied, truncating the ranks to
maximize compression. We exploit fast computation of the approx-
imation error of a given Tucker approximation and all its leading
subtensors to determine the best truncation. Thus, prior knowledge
of the output ranks is no longer required, but the choice of initial
ranks affects the number of HOOI iterations performed.
TuckerMPI is a C++/MPI library that implements STHOSVD for
large dense tensors [4]. We build our parallelization of HOOI on
TuckerMP], leveraging the existing functionality for the main com-
putational kernels required of both STHOSVD and HOO], including
tensor-times-matrix (TTM) and algorithms for computing the SVD.
The efficiency and scalability of HOOI is largely determined by
those of the TTM and SVD kernels. We apply two key optimizations,



SC ’25, November 16-21, 2025, St Louis, MO, USA

one for each kernel, in order to make our rank-adaptive parallel
HOOI algorithm more efficient. To reduce the computational costs
of the TTM kernel, we use memoization to avoid recomputation
of individual TTMs that occur across subiterations of HOOI see
§ 3.3. To reduce costs and expose better parallelism of SVD com-
putations, we use subspace iteration within HOOI subiterations.
While subspace iteration computes only an approximation to the
leading left singular vectors, we show that one subspace iteration
is sufficient to obtain the desired accuracy across the full HOOI it-
eration. Implementation of subspace iteration requires new parallel
computational kernels in TuckerMPI, which we describe in § 3.4.

In § 4, we evaluate the efficiency and scalability of HOOI and
compare it to TuckerMPI’'s STHOSVD. We consider synthetic test
data to show how the number of modes and the compression ratios
affect performance, and we demonstrate the impact of our compu-
tational optimizations in different scenarios for the rank-specified
approximation problem. We also consider three real datasets gen-
erated from scientific simulation of fluid flow and combustion to
test the rank-adaptivity of our algorithm. The experimental results
demonstrate that HOOI generally scales as well as STHOSVD. In
cases of large tensor dimension, STHOSVD becomes bottlenecked
by a sequential SVD-related computation, and HOOI scales signif-
icantly better than STHOSVD at high core counts. We show that
HOOI benefits from the reduction of computational cost, roughly
proportional to the compression ratio in a single tensor dimension,
compared to STHOSVD, but that it can suffer from lower local ker-
nel efficiency as a result. For scenarios of high compression ratio
and initial ranks that are overestimates of the output ranks, we
observe that HOOI achieves Tucker approximations faster than
STHOSVD, and in many cases, produces Tucker decompositions
with better compression ratio.

To summarize, the main contributions of this work are

(1) parallelization of HOOI using the TuckerMPI library;!

(2) novel adaptation of HOOI to solve the error-specified formu-
lation of the Tucker approximation problem;

(3) efficient memoization of the TTM computations across subit-
erations of HOOI;

(4) novel use of subspace iteration to reduce parallel computa-
tional cost of the SVD computations within HOOI; and

(5) demonstration of faster time-to-solution of HOOI compared
to STHOSVD for scientific simulation datasets.

We conclude in § 5 that HOOI is a viable alternative to STHOSVD
for solving both rank-specified and error-specified formulations of
the Tucker approximation problem, and it is preferred when the
compression ratio is high or individual tensor dimensions are large.

2 Background

Notation. Throughout this work, we use bold lowercase letters
(e.g., v) to denote vectors, bold uppercase letters (e.g., M) to denote
matrices, and bold script uppercase letters (e.g., T) to denote tensors.
A d-way tensor J € R™*"""X"d has entries J;, ;,,..i,- We also use
the term modes to refer to the dimensions of a tensor.

Operations. A d-way tensor J can be mode-wise unfolded into
a matrix in d ways; the resulting mode-j unfolding, denoted as

10Our TuckerMPI extension is available at https://doi.org/10.5281/zenodo.16752647.

1801

Pinheiro, Devarakonda, Ballard

T(jy, is formed so that the columns are the mode- fibers of the ten-
sor. Another major operation for tensors is the multi-TTM, which
computes the product of a tensor I with j matrices {U;} in up
to d modes. A single TTM along mode j, denoted as T x; Uj, is
computed as the matrix multiplication U;T ;). The multi-TTM of J¥
with d matrices I X; Uy - - - X4 Uy is computed as a series of TTMs.
The resulting tensor can be unfolded along mode j, expressed as
U;T(jy (Uy®---®Uj31®Uj_1®---®U;)T. Also let || - || denote
the tensor norm, which is the natural generalization of the matrix
Frobenius norm.

Tucker Decomposition. The Tucker decomposition of a tensor
X € R"M* " XMd for a rank r = (r; X - -+ X rg) approximates X as
the product of a core tensor G € R™*"""*7d and d factor matrices
U; € RW*" where X » X = G x U X2 Uy - - - x4 Uy. By taking
rj = rank(X(;)), we can also obtain an exact representation of
tensor X. The optimal rank-r Tucker decomposition of X can be
expressed as a solution to the rank-specified optimization problem

min  [|X =G x; Uy % Uz --- %3 Uyl
subject to G € R"* X4, U; e RW™*" for j=1,....,d.

(1)
Alternatively, the error-specified formulation of the Tucker ap-
proximation problem is given as

d

d
min l_[ rj+ Z njrj
J=1 J=1 )

subject to G € R ¥ >4, U; e RW*" for j=1,...,d
and [|X -G x; Up x2 Uz --- xg Uyl < €]|X]].

2.1 TuckerMPI’'s STHOSVD

Already implemented in TuckerMPI [4] prior to this work is the
STHOSVD method, which approximately solves (2) by unfolding
the jt" mode, computing its leading left singular vectors (LLSV),
and performing a TTM with the singular vectors to truncate the j
mode to rank r;. Once all factor matrices have been computed, the
truncated tensor has rank r and is the core tensor, G, corresponding
to a Tucker decomposition of X with approximation error 1 -
X|| < €]|X||, where X = G x; Uy X Uy - - - x4 Uy.

A relative error of ¢ in the Tucker decomposition can be achieved

by selecting r; in the LLSV computation such that Z?_jr, + o? <
-

€2||X||2/d, where o is the ith largest singular value of the j™ unfold-
ing. That is, the LLSV computation can be performed to compute a
specified number of singular vectors or to achieve a specified error;
see [5] for more details. Algorithm 1 shows the steps of STHOSVD
to obtain a Tucker decomposition of X. There are several algo-
rithms that one could choose in line 4 of Alg. 1 to compute Uj.
As described in [4], TuckerMPI computes the eigenvalue decom-
position (EVD) of the Gram matrix, Y j)ng). Alternative choices
include QR-based approaches such as LQ decomposition of Y )
followed by an SVD of L [18] and randomized approaches such
as the randomized range finder method [20, 21]. The following
complexity analysis of TuckerMPI’s STHOSVD follows [4].



Parallel Rank-Adaptive Higher Order Orthogonal Iteration

Algorithm 1 Sequentially-Truncated High-Order SVD

SC ’25, November 16-21, 2025, St Louis, MO, USA

Again, note there is no communication cost in mode j if P; = 1.
Because the largest data communicated occurs in mode 1, proces-

1: function [ G, {U;}] = STHOSVD(X, ¢)

) Yy=x sor grids with P; = 1 are typically the fastest for STHOSVD (as

3 for j=1:ddo we observe in our experiments). We summarize the STHOSVD

4 Uj = LLSV(Y ), el XN /Vd) > Error-specified communication costs in Tab. 2 (shown in red).

5: ‘d = Id X UT

) end for 7 2.2 TuckerMPTI’s HOOI

7 §=Y

8: end function Algorithm 2 HOOI

STHOSVD'’s Computational Complexity. TuckerMPI uses P pro- 1: function [ G, {U;}] = HOOI(X, r)
cessors organized into a d-dimensional grid such that P = (P; X- - -X 2 Initialize factor matrices Uj, j=1,...,d
P;) and that each processor stores a 1/P fraction of X. Our analysis 3 while not converged do
will assume X € R™*""*" and G € R™"*" to simplify cost com- 4 forj=1:ddo
parison across algorithms. Under these simplifying assumptions, 5 Y = murTt-TTM(X, {UT], .. -,U]T,l, U]T+1’ Ul
the cost of LLSV in line 4 is given by 6 Uj =LLSV(Y(jy,7j) > Rank-specified
d fi
L+ 7 end for
8 end while

2\

d i—1.d—ij+
( rt ln Jj+2
Jj=1

+ 0(n3)) x5t o(dn®),

where the first term is the cost of computing the n X n Gram matrix
and the second term is the cost of sequentially computing the EVDs
to leading order. After Uj is computed, Y is truncated by performing
the TTM in line 5, which costs

9 zd: rjnd_jJrl 2rnd
& p TP

Computing the Gram matrix is a factor of n/2r more expensive
than the TTM and is the dominant cost for n > r. Sequentially
truncating Y leads to decreasing dimensions, so the algorithm is
typically dominated by the first Gram matrix computation. Note
that the EVD is not parallelized, which can be a barrier to parallel
scaling when a single tensor dimension is large. We summarize the
leading order STHOSVD flops cost in Tab. 1 (shown in red).

STHOSVD’s Communication Complexity. TuckerMPI’s parallel
algorithm for LLSV explicitly forms the Gram matrix, G = Y ; )Y(Tj),
where Yy is redistributed (if necessary) to a 1D column layout
across P processors, and then sequentially computes the EVD of
G. After redistribution of G, each processor computes a local Gram
matrix which can be sum-reduced (or all-reduced) prior to the
EVD. At iteration j, the number of entries in Y is ri=1pd=j+1 The
Gram matrix that is computed in each mode is of size n X n, so
the total communication cost is dn? for the all-reduce. Thus, the
communication cost is given by

d ( j-1,d-j+1 p, d
i A 2 n® P;-1 2
. +0 r—- +dn“,
Z( P P; )

j=1
where we assume the redistribution cost is dominated by the first
mode. However, note that there is no redistribution cost in mode j
if P; = 1. Finally, the paralle]l TTM also requires communication to
perform a sum-reduce of local TTM results. Since the output of the
TTM is largest in the first mode (of size rn?=1/P), the communica-
tion cost of TTMs to leading order cost is

d rjnd_j rnd_l
Z P (Pj—1) =
Jj=1

(P —-1).

1802

9: 9 = ‘d Xd U;
10: end function

Higher Order Orthogonal Iteration (HOOI) is given in Alg. 2 and
is an alternative method for solving the rank-specified formulation
of the Tucker approximation problem [12, 14, 17]. HOOI is a block
coordinate descent method and can be initialized from random
initial factor matrices {U; € R/ }?:l‘ This algorithm iteratively
updates each factor matrix U; by performing a TTM with all but the
j™ factor matrix to obtain an intermediate tensor Y and computing
the leading left singular vectors of Y ;). The core tensor G can be
computed once, at the end, or at the end of every iteration in order
to compute the approximation error. In § 3.2, we will discuss a
technique that allows HOOI to adapt ranks by performing analysis
on G every d iterations. The following analysis of TuckerMPI’s
HOOI follows [1].

HOOTI's Computational Complexity. Since HOOI is an iterative
algorithm for Tucker decomposition, we analyze the cost of one
HOOI iteration. Each HOOI iteration requires d multi-TTMs, in
all modes but mode-j, and d LLSV computations to update factors
matrices, in all modes. Once the factor matrices have been updated,
the core tensor G is obtained by performing a TTM with the last
factor matrix Uy. The cost of computing d multi-TTMs is given by

d i d-—
r'n rn
2d — x~2d—.
; P P
The cost of each TTM decreases, so the first term in the summa-
tion (i.e. the first TTM) dominates. Multiplying the cost of the first
TTM by d yields the cost of d multi-TTMs (i.e. one HOOI iteration).
The cost of computing LLSV is given by
d-1.2
d r

+0(dn’),

where the first term is the cost of computing the Gram matrix
Y j)Y(Tj) and the second term is the cost of computing the EVD.
Finally, the core tensor at the end of each HOOI iteration is obtained
by performing a TTM in mode-d with the intermediate tensor Y and



SC ’25, November 16-21, 2025, St Louis, MO, USA

Uy, which has a cost of 2nr¢/P and is a lower order term. We sum-
marize the leading order cost per HOOI iteration as implemented
by TuckerMPI in Tab. 1 (shown in red).

HOOI’s Communication Complexity. The communication cost of
each iteration of HOOI is dominated by multi-TTMs and LLSV com-
putations. Each TTM in the multi-TTM requires communication
to perform a sum reduction to form Y. Communication is required
along the processor dimension corresponding to the mode in which
a TTM is performed. The size of Y decreases with each TTM, so
the communication cost of a multi-TTM is dominated by the first
TTM. Each HOOI iteration performs d multi-TTMs, where one
iteration updates the factor matrix in the first mode. The cost of
communication for the multi-TTMs is given by

d J-1 i d—i+2 d i1 _d-1+1
rn r n
D
j=1 ‘Vi=1 i=j+1
d-1 d-1
rn rn
~(d-1 Pi—-1)+ Py —1).
( ) 7 (P1—-1) 7 (P2—-1)

The first term corresponds to the d — 1 TTMs performed in the 1st
mode and the second term corresponds to TTMs performed in the
2nd mode (for the multi-TTM in all but the 1st mode).

Communication is also required when computing the LLSV in
each mode. Using the same LLSV algorithm as in STHOSVD, the
Gram matrix is computed in parallel followed by a sequential EVD.
Computing the Gram matrix requires an all-to-all to redistribute
Y () so that it is stored in 1D-column layout. After redistribution
Y j)Yz-j) is computed in parallel by performing local matrix-matrix
multiplications that are sum-reduced to obtain the Gram matrix.
The cost of communication for the LLSV is given by

d-1, 4

ré ‘n pPi—-1 2
E —— | +dn®,

p ( Pi ) "

i=1

where the first term is the cost of all-to-all communication and the
second term is the cost of sum reduction of the Gram matrix for
one HOOI iteration (i.e. d calls to LLSV). We summarize the HOOI
communication costs as implemented by TuckerMPI in Table 2
(shown in red).

2.3 Other Related Work

STHOSVD Optimizations. Many previous parallelizations of the
Tucker approximation algorithms have been developed. Austin et
al. [1] developed the first parallel implementation of STHOSVD
and HOOI for dense tensors. Chakaravarthy et al. [10] proposed
optimizations to help port the computational kernels of STHOSVD
to GPUs, including using randomized algorithms. Li et al. [18]
propose a more numerically stable version of STHOSVD using a
parallel QR-SVD and proposed running in lower working precision
to achieve speed up. Minster et al. [20] introduced algorithms to
perform randomized sketches with random matrices that have in-
ternal structure to reduce computation further. These algorithms
were implemented in the TuckerMPI library, but we do not compare
against them. One can view HOOI with initial randomization as a
form of the structured random sketches from that algorithm.

1803

Pinheiro, Devarakonda, Ballard

HOOI Optimizations. Other related work has improved the HOOI
algorithm in similar ways to our proposed algorithm. Xiao and Yang
[26] propose a related mode-wise adaptive-rank strategy for HOOI
that allows for both expansion and contraction of ranks across iter-
ations, though their approach truncates mode by mode. They show
their MATLAB implementation is competitive with Tensorlab’s
implementation [25] of STHOSVD. Sun and Huang [23] proposed
HOQRI for solving the fixed-rank formulation for sparse input
tensors. It uses subspace iteration without forming intermediate
quantities to avoid the intermediate memory blowup problem that
occurs for sparse Tucker approximations. They show their MATLAB
implementation achieves better accuracy more quickly than Tensor
Toolbox’s implementation [2] of (sparse) HOOL. Finally, Kaya and
Robert [15] study dimension tree memoization for CP-ALS (a block
coordinate descent method for computing a CP decomposition)
and HOOI algorithms applied to dense tensors, and they provide
efficient algorithms for selecting the optimal tree structure. We use
a heuristic for determining our dimension tree structure, so they
may not be optimal. Chakaravarthy et al. [9] employ dimension
trees and other optimizations within HOOI in a parallel setting,
but they do not show improvement over contemporary parallel
implementations of STHOSVD.

3 Algorithm Design

3.1 Motivation

Comparing TuckerMPI'’s STHOSVD and HOOI flops costs (shown
in red in Tab. 1), we observe that for most problems, STHOSVD’s
dominant cost is n**'/p and HOOI's dominant cost is 2d¢ - rn?/p,
where ¢ is the number of HOOI iterations to achieve the same
approximation error as STHOSVD. This implies that HOOI is com-
putationally cheaper if n/r > 2d¢, i.e., if the dimension reduction
in each mode of the tensor is at least twice the number of dimen-
sions times the number of HOOI iterations. As claimed in § 1 and
empirically corroborated in § 4, when initialized randomly, HOOI
often converges to an error comparable to STHOSVD in as few
as 2 iterations. Under this assumption, the dimension reduction
requirement for HOOI to be cheaper becomes n/r > 4d. Although
such a high degree of dimension reduction has been observed for
some Tucker compression problems, for reasonably large d (e.g.,
4-way or 5-way tensors), it is rare. In cases of small d and large n
and number of processors P, TuckerMPI's STHOSVD and HOOI
can be bottlenecked by the sequential EVD computations, which
are O(dn®) and O(d¢n?) respectively. In this case, we never expect
HOOI to be cheaper, which we in fact observe and discuss in § 4.1.

However, we propose two means of reducing the computational
cost of HOOI iterations to make the method much more competitive
with STHOSVD even in cases of smaller dimension reduction. The
first optimization is dimension tree memoization of the TTMs that
usually dominate the cost of HOOI iterations. As shown in § 3.3, this
reduces the TTM computational cost by a factor of d/2, and implies
that the dimension reduction requirement for HOOI to be cheaper
becomes n/r > 8 (assuming 2 iterations). The second optimization
is the use of subspace iteration to reduce the dominant cost of
computing LLSV by a factor of 1/4 - n/r and reduce the sequential
computation within TuckerMPI by a factor of O ((n/ r)z). The details
of this optimization are given in § 3.4.



Parallel Rank-Adaptive Higher Order Orthogonal Iteration

Before describing the computational optimizations, we show in
§ 3.2 how we modify the HOOI algorithm to solve the error-specified
formulation of the Tucker approximation problem. Given this mod-
ification, along with the computational optimizations, HOOI be-
comes much more competitive with STHOSVD and significantly
outperforms it in certain cases of high dimension reduction.

Our proposed algorithm RA-HOSI-DT, with all three modifica-
tions/optimizations, is given in Alg. 3. Tables 1 and 2 summarize the
cost analysis, showing the benefits of each of the two optimizations
and comparing the final costs of RA-HOSI-DT with STHOSVD. As
argued above, RA-HOSI-DT is computationally cheaper roughly
when n/r > 8, and it also alleviates a O(dn?) sequential bottleneck
in STHOSVD. It also requires less communication roughly when
nfr > 2(Py + Py —2).

Algorithm 3 Rank-Adaptive HOOI with dim. trees and sub. iter.

1: function [G, {U;}] = RA-HOSI-DT(X, ¢, 1, @)

2 Initialize factor matrices Uj, j =1,...,d

3 while not converged do

4 [G,{U;}] = HOSI-DT(X, {U;},1:4d,r1)

5 if ||G]12 = (1 - £2)]|X||? then

6: Find r by solving (3)

7 G=5(1:r),U;=U;(;;1:rj)forj=1,...,d
8 else

9 r=aR > increase ranks by constant factor
10: end if
11: end while

12: end function

3.2 Rank-Adaptive HOOI

A significant disadvantage of HOOI is that it solves only the
rank-specified formulation of the Tucker approximation problem,
whereas STHOSVD can adaptively select ranks based on a rela-
tive error tolerance. We propose a technique that allows HOOI to
automatically adapt ranks to meet a user-specified relative error
tolerance, as shown in Alg. 3. Line 4 performs an update of all factor
matrices and the core using optimizations described in § 3.3 and
§34.

Recall that for the error-specified formulation, given an error
tolerance ¢ and an initial rank estimate r, our method adaptively
finds a Tucker decomposition X = [G;Uy,...,Uy] for a tensor
X € RM>Xnd gych that || X — X|| < ¢]|X||. Whereas in clasical
HOOI the core is only updated after the iterations, here we compute
the core tensor at the end of every iteration and perform error
analysis on it. To check the error, we use the identity that for
orthonormal matrices Uy, ..., Uz and G = X x4 UlT XXy Ung’ the

approximation error can be written as ||X — 5C||2 =X -Gx;U; x
< xg Ugll? = 1X112 = 1ISI1? ([5, Proposition 6.3]). If the current
Tucker approximation is not sufficiently accurate, we increase all
ranks by a constant factor a and perform the next HOOI iteration.
The tunable parameter « trades off how many iterations are required
in order to reach ranks that will satisfy the approximation error
with how large the overestimate is once the error is achieved; we
typically use 1.5 or 2. If the current approximation satisfies the
error threshold, then we can optimize over all rank truncations

1804

SC ’25, November 16-21, 2025, St Louis, MO, USA

6{1, 2,3,4, 5,6}1
e
{1,2,3} {4,5,6}
3
PN
{1} {2.3} {4} {5.6}
N N
{2} {3} {5} {6}

Figure 1: Illustration of multi-TTM memoization for an order-6 ten-
sor. Each node in the tree shows the set of modes in which multipli-
cation has not been performed. Each notch in an edge is a TTM in
the labeled mode. Factor matrices are computed at each leaf node in

the mode shown. G is updated in the last leaf node.
by analyzing the core tensor’s entries. Specifically, we solve the

optimization problem

. d d
min szlrj +2j=1njrj, -
subject to [|G(1: 1)||? = (1 - &) [1X]|%.

This computes the leading subtensor of G that minimizes the size
of the Tucker approximation and also satisfies the error threshold.
Note that any subtensor of the core, along with the corresponding
columns of the factor matrices, is a valid Tucker approximation
with error determined by the norm of the core subtensor. The
optimal subtensor need not be a leading one, but we order factor
matrix columns to concentrate the weight of G towards the entry
of smallest index value so that the heuristic of searching over only
leading subtensors is reasonable.

Core Analysis Computational Complexity. The cost of one RA-
HOOI iteration is the same as one iteration of HOOI given in Tab. 1,
but with the possible additional cost of performing analysis on the
core tensor G to adapt the ranks for the next iteration. We solve
the optimization problem given in eq. (3) exhaustively by comput-
ing the norm and corresponding size of every leading subtensor.
This can be done using only o(dr?) operations by employing a
multidimensional prefix sum computation across the squares of the
core entries. Because computational cost tends to be dominated
by the rest of the HOOI iteration, we perform the core analysis
sequentially, though the prefix sums are readily parallelizable.

Core Analysis Communication Complexity. At the end of a HOOI
iteration, G is distributed across all processors, so it must be gath-
ered on a single processor in order to perform analysis. Since the
entire core tensor must be communicated, the all-gather cost is rd
per HOOLI iteration. We demonstrate in § 4 that the sequential cost

of core analysis is typically negligible.

3.3 Dimension Tree Memoization

Adapting ranks in each HOOI iteration is a low order cost, however,
the cost of TTMs is a factor of d more expensive than in STHOSVD.
We can reduce the cost of TTMs by avoiding redundant computa-
tions. Notice that for j = 1 in Alg. 2 the following multi-TTM is
computed Y =X % Uj x3 UJ ... %z U] At j = 2 the multi-TTM is
Y =X x Ul x3U] ... %3 UJ. By comparing the two multi-TTMs
we can see that d — 2 TTMs are the same (namely 3 to d). So we
can reuse results from one multi-TTM to the next by memoizing



SC ’25, November 16-21, 2025, St Louis, MO, USA

Pinheiro, Devarakonda, Ballard

Algorithm | LLSV | TTM | Core Analysis
. n?rd-1 3 . ﬂ
HOOI iteration Gram + Eig | d"5— + O(dn’) Direct 2d 5 0(drd)
nré 2 . rn?
Sub. Iter. 4d"5- + O(dnr®) | Dim. Tree | 4%~
STHOSVD 7L+ O (dnd) grnd -
RA-HOSI-DT ¢ (4d "{,d + O(dnrz)) ¢ (4%) ¢ (O(drd ))

Table 1: Leading order flops costs of LLSV (Gram + Eig and Subspace Iteration), multi-TTM (Direct and Dimension Trees) and Core Analysis
algorithmic choices for HOOI and a comparison between STHOSVD and HOOI with Subspace Iteration and Dimension Trees (HOSI-DT)

optimizations. We assume ¢ iterations of HOSI-DT are performed.

Algorithm LLSV | TTM | Core Analysis
- d-1 P P - -1 a1
HOO iteration | S*2m * Eig ’;VP d p,-l +dn? Direct (d - 13 rlnp (P —1) : I"T (P — 1) d
Sub. Iter. = Z?:l (P; — 1) + 2dnr | Dim. Tree. m}; (P1—1)+ '”P7 (Pg-1)
STHOSVD 2By dn? el (py - 1) -
RA-HOSI-DT t(§ v (P—1)+ zdnr) t("‘;’I (Py+Py — 2)) ¢ (rd)

Table 2: Leading order bandwidth costs of LLSV (Gram + Eig and Subspace Iteration), multi-TTM (Direct and Dimension Trees) and Core
Analysis algorithmic choices for HOOL For reference, we include a comparison between STHOSVD and HOOI with Subspace Iteration and

Dimension Trees (HOSI-DT). We assume a processor grid of P = (P; X -

intermediate results. This idea, organized using so-called “dimen-
sion trees,” was first used in the context of CP decompositions [22]
and has been applied to Tucker computations as well [15, 20]. Fig-
ure 1 shows an example dimension tree as we implement them
for an order-6 tensor where each node represents the set of modes
in which a TTM has not been performed. At the root of the tree,
no TTMs have been performed, so the tensor is X. Each notch
in an edge of the tree represents a TTM in the labeled mode. At
each leaf node, TTMs in all modes but one have been performed,
so we update the factor matrix in that mode by performing LLSV.
The core tensor G is updated at the last leaf node by perform a
TTM between the (memoized) intermediate tensor and the factor
matrix corresponding to the last leaf node. Algorithm 4 shows the
HOOI iteration using dimension tree memoization implemented
recursively.

Dimension Tree Computational Complexity. The flops cost of per-
forming multi-TTMs using dimension trees is given by

d/2 i d-i+1 d d
rn id-i+1| _ ,I1
4 E —— +0]|d E r'n ~4—P s
i=1 i=d/2+1

where the first term is the cost of computing the TTMs in the first
two branches (left and right of the root) in the dimension tree and
the second term is the cost of computing the TTMs in all remaining
branches. The largest TTMs in the first two branches dominate, so
the cost of multi-TTMs is 4-rn%/P (i.e. the first TTM in each branch),
which is a factor of d/2 improvement over computing multi-TTMs
directly. This cost is summarized in Table 1.

Dimension Tree Communication Complexity. Since the first TTM
in each of the two multi-TTMs off the root dominate, the commu-
nication cost of multi-TTMs is given by

42 i d-i-1 rnd-1
o (P 14 Py — )~

(P1+Pg-2).
i=1

1805

-+ X Pg) and that ¢ iterations of HOSI-DT are performed.

Algorithm 4 Recursive HOOI iteration via dimension trees

1: function [ G, {U;}] =HOSI-DT(X, {U;}, m,r)
2 if length(m) = 1 then

3 Upn = LLSV-SIX (1y), Upns i)

4 if m = d then

5: G=X Xm U;—n

6 end if

7 else

8 Partition m = [y, n]

9 X=X Xepu UjT
10: [G.{U;}] = HOSI-DT(X, {U;},,r1)
11: X=X Xjep UjT
12: [G.{U;}] = HOSI-DT(X, {U;}, 1, 1)
13: end if

14: end function

When traversing the right branch in the dimension tree shown
in Fig. 1, TTMs are performed in the first d/2 modes starting with
mode 1. The communication cost associated with TTMs in the
right branch is the cost of a reduce-scatter on local data of size
rn®='/p . (P; — 1), which yields the first term. The second term
is due to the communication cost associated with traversing the
left branch in Fig. 1. TTMs in the left branch are performed in
the last d/2 modes starting with mode d. We perform left branch
TTMs in reverse order because the mode d TTM achieves higher
local TTM performance due to the layout of the local tensor in
memory. The communication cost associated with TTMs in the left
branch is the same as the first term, except that the reduce-scatter is
performed in the P; processor grid dimension. Therefore, processor
grids with P; = Py = 1 are typically the fastest for HOOI algorithms
employing the dimension tree optimization (as we observe in our
experiments).

As shown in Tabs. 1 and 2, introducing dimension trees memo-
ization reduces the flops cost of TTMs in HOOI by a factor of d/2
and the communication cost by a factor of d — 1 in the first term.



Parallel Rank-Adaptive Higher Order Orthogonal Iteration

3.4 Subspace Iteration

So far, we have assumed that the LLSVs of a matrix A are obtained
as the eigenvectors of the Gram matrix, AAT. The next algorithmic
improvement we introduce is to compute the leading left singular
vectors by using subspace iteration. Algorithm 5 shows a single
subspace iteration, but in principle, the computations could be
repeated to improve accuracy.

Algorithm 5 LLSV via Subspace Iteration
1: function Q = LLSV-SI(A, U, r)
2: G=UTA
3: Z =AGT
4 [Q.~ ~] = QRCP(Z)

5. end function

> QR with column pivoting

We note that the input matrix A is Y(;y from Alg. 2 or Xp,
from Alg. 3, which is the result of an all-but-one multi-TTM, and
the input matrix U is the factor matrix from the previous HOOI
iteration. This implies that the temporary matrix G in Alg. 5 is an
unfolding of the core tensor corresponding to the current set of
factor matrices. That is, the matrix multiplication in line 2 is a TTM,
which we implement using existing TuckerMPI subroutines. The
multiplication in line 3 is a tensor contraction in all modes but one
between the core tensor and the result of an all-but-one multi-TTM,
which is not implemented in TuckerMPI. Our parallel algorithm
mimics the computation of the Gram matrix of a tensor unfolding,
but it is a nonsymmetric operation and has different costs. Finally,
we perform QR with column pivoting in line 4 to orthonormalize
the subspace iteration result and also order the columns to aid in
core analysis, which is discussed in § 3.2. We choose to do only a
single subspace iteration because we use an accurate initialization
(from the previous HOOI iteration) and because high accuracy of
a HOOI subiteration is less of a priority than high accuracy of the
full HOOI iteration.

Subspace Iteration Computational Complexity. Each subspace it-
eration requires two matrix-matrix multiplications and one QR
decomposition. The first matrix-multiplication corresponds to the
TIMG =Y Xx; U} (in the notation of Alg. 2) and the second com-
T
)
of performing the TTM and contraction in each HOOI iteration is
4d-nr?/p. The cost of the QR decomposition of the matrix Z € R"*"
in each HOOI iteration is O(dnr?), where we assume a sequential
QR decomposition. The total cost of performing subspace iteration
in each mode across an entire HOOI iteration is given by

putes the tensor contraction Y ;)G ., . The total computational cost

d
4d% +0(dnr?).

As shown in Tab. 1, the cost of LLSV using subspace iteration
is a factor of 1/4 - n/r cheaper than the cost of LLSV via the Gram
matrix. When comparing the sequential EVD to the sequential QR

decomposition, the cost of the latter is a factor of O ((n/r)z) faster.

Subspace Iteration Communication Complexity. Subspace itera-
tion requires communication in the TTM, tensor contraction, and
QR decomposition in each mode. The communication cost of the

1806

SC ’25, November 16-21, 2025, St Louis, MO, USA

TTM is given by r¢/P - (P; — 1), where P; corresponds to the num-
ber of processors in the j mode. The tensor contraction requires
redistribution of both tensors via all-to-all communication steps.
However, the all-to-all cost is a lower order term since it is a factor
of Pj cheaper than the communication cost associated with the
TTM. Once the contraction is performed, a sum reduction followed
by a broadcast is required to ensure that all processors can inde-
pendently compute local QR decompositions. The communication
cost of the QR decomposition is given by 2nr since Z € R™" and
must be communicated twice. As shown in Tab. 2, the total commu-
nication cost of the LLSV calls within an iteration of HOOI using
subspace iteration is given by

d

d
T Z (Pj - 1) + 2dnr.
P =

4 Results

This section presents a comparison of the running time (strong
scaling and running time breakdown) and compression (error vs.
time and error vs. compression ratio) performance of the various
Tucker algorithms presented in this work. All algorithms were
implemented using the TuckerMPI (C++/OpenMP]I) library [4].

Computing platform. Our experiments were conducted on
NERSC Perlmutter (CPU partition). The system consists of 3072
compute nodes with dual-socket AMD EPYC 7763 64-core CPUs.
Each socket has 4 Non-Uniform Memory Access (NUMA) regions
for a total of 8 NUMA regions per node. Each NUMA region has 64
GB of DRAM memory, therefore each CPU socket has 256 GB of
DRAM for, a total of 512 GB of memory per node.

Experiments. We perform experiments on synthetic tensors that
are randomly generated and tensors obtained from real applications.
We use 3-way and 4-way tensors for the synthetic experiments, and
three real datasets: Miranda [27] (3-way), HCCI [7] (4-way), and
SP [16] (5-way). The real datasets are described in more detail in
§ 4.2.1 and 4.2.2. Experiments performed on synthetic tensors are
performed in single precision, while experiments on real datasets
are performed in single or double precision depending on their stor-
age precision on disk. Strong scaling experiments are performed on
the synthetic tensors. We show running time breakdown of both
real and synthetic experiments. For synthetic tensors we show the
running time breakdown at small and large scale to highlight how
each step in a given algorithm scales. For real tensors we vary the
error tolerance and starting ranks to show how performance break-
downs vary. Compression performance experiments are performed
only on the real datasets.

Even for a fixed number of processors P, the d-way processor
grid has a significant effect on all algorithms. As described in § 3,
STHOSVD benefits from processor grids with P; = 1, and HOOI
variants using dimension trees are theoretically more efficient when
Py = Py = 1. In addition, for modes with small tensor dimension, a
large processor dimension in that mode may cause load imbalance
due to uneven division. In all experiments, we test all algorithms on
a variety of grids, including those we expect to benefit individual
algorithms, and we report the fastest observed running times.



SC ’25, November 16-21, 2025, St Louis, MO, USA

3 way
T T T T T T T T T 1T 1T 71711

Time
wu
T
|

N N I N A |
— AN 0O AN
— 0N O

|
0 O N
AN N =
— N "

8192 -

1024
2048 |-
4096 |-

Number of Cores

4 way
MET T T T T T T T T T T 114

Time
[\)
o
T

I |
— AN 00O N
— N0

I 1 |
0 O N
N
— N

4096
8192 |~

|
]
<
j=J
N

1024 |-

Number of Cores

—a— HOOI
—a— HOSI-DT

—e— HOOI-DT HOSI
STHOSVD

Figure 2: Strong scaling comparison of Tucker algorithms in single
precision using a 3-way 3750 X 3750 x 3750 input tensor (top) and a
4-way 560 X 560 X 560 X 560 input tensor (bottom).

4.1 Strong Scaling on Synthetic Tensors

First, we present strong scaling experiments on the 3-way and 4-
way synthetic tensors to demonstrate the parallel scaling of HOOI,
HOOI-DT, HOSI, HOSI-DT, and STHOSVD. We choose tensor di-
mensions to maximize the size of the tensor that can fit on a single
node (in single precision).

For synthetic input, we generate tensors by forming a Tucker-
format tensor of specified rank and adding a specified level of
noise. Thus, these experiments are performed for the rank-specified
formulation of the Tucker approximation problem to recover the
input. We run for two iterations for each variant of HOOI even
though we often have a sufficiently accurate approximation after a
single iteration. We include overhead due to core analysis for the
error-specified formulation in the experiments on the real datasets.
The largest 3-way tensor that fits into single-node memory is a
tensor of size 3750 X 3750 X 3750. We generate this tensor to have a
rank of 30 in all modes. Similarly, we construct the 4-way tensor of
size 560 X 560 X 560 X 560 with Tucker ranks (10, 10, 10, 10).

1807

Pinheiro, Devarakonda, Ballard

Figure 2 shows the strong scaling results of the HOOI variants
and STHOSVD on up to 4096 cores for the 3-way and 4-way syn-
thetic datasets. We observe that STHOSVD scales well to 64 cores,
attaining a speedup of 15.2X over the single core STHOSVD run.
STHOSVD continues to scale up to 2048 cores, but achieves only a
modest speedup of 1.3X over the 64 core run. This is due to Tuck-
erMPT’s limitation of having a sequential EVD implementation. In
contrast, the 4-way STHOSVD strong scaling experiment shows
good scaling up to 8192 cores, achieving a speedup of 937X over
the single core run. This difference in STHOSVD performance is
explained by the tensor dimension: a sequential EVD of a matrix of
dimension 560 does not become the bottleneck until P is large.

When comparing the two HOOI variants (which use Gram SVD),
we observe that HOOI-DT yields a sequential speedup of 1.4X over
HOOT’s direct TTM implementation for the 3-way tensor. For the 4-
way tensor, HOOI-DT achieves a sequential speedup of 5.4x faster
than HOOIL When comparing parallel scaling in the 3-way case, we
see that HOOI and HOOI-DT scale to 16 cores with a speedup of
3.5% and 2.8X%, respectively, over their single core runs. However,
neither variant scales beyond 16 cores for the 3-way tensor because
of the sequential EVD bottlenecks. For the 4-way tensor, HOOI and
HOOI-DT scale to 8192 cores with a speedup of 629x and 346X,
respectively, over their single core runs. The performance of HOOI
and HOOI-DT degrades at 128 cores (single node) because both
variants are memory-bandwidth bound, and we saturate bandwidth
at 64 cores. HOOI and HOOI-DT continue scaling beyond 128 cores
(multi-node scaling) because memory bandwidth increases. As can
be seen in the 4096 core plots of Fig. 3, HOOI and HOOI-DT suffer
from the problem of the sequential EVD, and they are approximately
twice as slow as STHOSVD because they do twice as many EVDs
over two iterations.

HOSI and HOSI-DT show significantly better scaling on the 3-
way tensor when compared to STHOSVD and the HOOI variants
because of the difference in LLSV subroutines. HOSI-DT achieves
sequential speedups of 6.5% and 1.7x over STHOSVD and HOOI-
DT, respectively. The HOSI variants scale to 4096 cores with HOSI-
DT achieving significant parallel speedups of 259% and 515X over
STHOSVD and HOOI-DT, respectively. HOSI-DT is also the fastest
Tucker variant for the 4-way experiment attaining speedups of
1.5% and 2.9% over STHOSVD and HOOI-DT, respectively when
comparing the best running times of each algorithm. HOSI and
HOSI-DT exhibit similar memory bandwidth scaling behavior as
the HOOI variants where performance degrades at 128 cores (single
node) and continues to scale beyond 128 cores (multi-node scaling).

4.2 Performance on Simulation Datasets

We turn our focus for the error-specified comparison of our best
algorithm, HOSI-DT, and the state-of-the-art, STHOSVD. The data
sets are decomposed using three error tolerances; 0.1 (“high com-
pression”), 0.05 (“mid compression”), and 0.01 (“low compression”).
Furthermore, we showcase HOSI-DT through three different types
of starting ranks for each error tolerance. Perfect starting ranks
are the same as the final ranks of STHOSVD given the maximum
relative error threshold. We overshoot and undershoot the same
starting ranks by 25% above and below to force our algorithm to
respectively increase and decrease ranks on the first iteration. We



Parallel Rank-Adaptive Higher Order Orthogonal Iteration

3way: 1 Core(s) 3way: 4096 Core(s)

I:lTTM Comp —
2,000 | B 1131 Comm 200 f
|:| Gram/Contraction Comp
E |:| Gram/Contraction Comm oé
£ 1,000 | Eigor 100 ]

mﬁHm

0
ROV SN
‘66 )1 ‘66 ‘60%

0
SRKEOIOR 0‘@
W R

4way: 1 Core(s)
| | | | | | | | | |

4way: 4096 Core(s)

T T ) ]
1,000 1 .. |
£ g M
B 500 ] 1
0.5
nﬁgﬁa

0
o TR O RSB NN
?;6 \ ?;a s\\;,o «é\Y\ o %\ X;p
Figure 3: Running time breakdown for the synthetic 3-way (top) and
4-way (bottom) tensors.

cap the number of iterations for HOSI-DT at 3. Though all three
iterations are shown in the Error vs Time and Error vs Size plots,
the running time breakdown plots show the breakdown only for
however many iterations it took for HOSI-DT to reach the desired
error threshold. For example, the top right plot of Fig. 7 it can be
seen that the HOSI-DT (Over) 0.1 threshold reached the desired at
the first iteration, so we don’t show the breakdown for the second
iteration despite its total time being shown on Fig. 6.

4.2.1 Miranda (3-way). The Miranda dataset is a three-dimensional
simulation data of the density ratios of non-reacting flow of viscous
fluids [27]. Each of its dimensions is 3072, and it is stored in single
precision requiring 115 GB. Our experiments use 1024 cores (8
nodes) for all algorithms.

Figure 4 demonstrates that for all error tolerances, three iter-
ations of HOSI-DT combined is faster than STHOSVD. But as
mentioned earlier, we focus on the least amount of iterations re-
quired to reach the desired error threshold. It is in high- and mid-
compression where we find the most speedup. Precisely, perfect
ranks achieve speedups of 82X for high-compression and 25x for
mid-compression, undershooting the ranks achieves speedups of
91x for high-compression and 35x for mid-compression, and over-
shooting the ranks achieves speedups of 156 for high-compression
and 47X for mid-compression. Low-compression is the first scenario
where we observe nonnegligible costs of the core analysis subrou-
tine. For high-compression, the best relative compression ratio is
69% which occurs at perfect ranks, mid-compression achieves a 10%
improvement using perfect ranks, and low-compression has better
compression at 6% when underestimating the ranks.

4.2.2 HCCI (4-way) and SP (5-way). We combine the discussion of
the HCCI and SP datasets results, as the results are qualitatively
similar. The Homogeneous Charge Compression Ignition (HHCI)

1808

SC ’25, November 16-21, 2025, St Louis, MO, USA

Error vs Size
I I I I I I

0.05 s m{005 T e
001 m—m s @ {0010 sl .

| | \ | \
0 20 40 60 0.5 1 1.5

Size (relative to STHOSVD)

Error vs Time

Relative Error

Time (in seconds)

—a— HOSI-DT Over —*«— HOSI-DT Perfect
—&— HOSI-DT Under m STHOSVD

Figure 4: Progression of time, error, and relative size over 3 iterations
of rank-adaptive HOSI-DT on the Miranda dataset using 1024 cores.

le-01 Error 5e-02 Error
60 T T I I
40 |- 1 40 |
[} Q
E E
20 |- {520 1
\ L L L L L L
EEIENY At SIS
B g Oq S 0O 5 OV S
O e S (QY\O O e S «Q,O
le-02 Error
I I
Core Comm
40 |- i Core Comp
. Eig/QR
g = Contraction Comm
20 - Contraction Comp

[ TT™ Comm
TTM Comp

5555
= = =
e qe‘ QO
&8 O%'Q ‘50%

Figure 5: Running time breakdown for the Miranda dataset using
1024 cores under different levels of compression.

o™

dataset is generated from a numerical simulation of combustion [7].
The dimension of the 4-way dataset is 672 X 672 X 33 X 626 stored
in double precision for a total of 75 GB. Thus, we can fit it on a
single node and use all 128 cores. The first two modes are spatial
dimensions, the third mode corresponds to 33 variable, and the
fourth mode corresponds to time steps. The SP dataset is generated
from the simulation of a statistically stationary planar methane-air
flame [16]. This 5-way dataset has dimensions 500 X 500 X 500 X
11 X 400 stored in double precision and requires 4.4 TB in storage.
For these experiments, we use 2048 cores (16 nodes). The first three
modes are spatial dimensions, the fourth mode corresponds to 11
variables, and the last mode corresponds to time steps.

In the case where we are dominated by the TTMs, the compar-
isons between HOSI-DT and STHOSVD are less extreme. Figure 6



SC ’25, November 16-21, 2025, St Louis, MO, USA

Error vs Time Error vs Size
I I | I

0.1} 4 01} -
0.05 |- -0.05 \—A |
0.01 |- [}i:ﬁﬂr——%ﬂ&———%A'Oﬂl *B\““__‘_TIHB—A .

0 10 20 0.5 1
Size (relative to STHOSVD)

Relative Error

Time (in seconds)

—A— HOSI-DT Over —*— HOSI-DT Perfect
—&— HOSI-DT Under m STHOSVD

Figure 6: Progression of time, error, and relative size over 3 iterations
of rank-adaptive HOSI-DT on the HCCI dataset using 128 cores.

le-01 Error 5e-02 Error
4[] T T 7] T T
3 4 1
Q %
£ E -
=2 =
2
1
SOV S Sy T O
&ec (2 O«le %Q K & v %Q
S o o S o o
¥ SN ¥ BN
le-02 Error
T T
15 - ’:‘ | Core Comm
Core Comp
w10 - 1 Elg/QR
g Contraction Comm
= Contraction Comp
5 [ TT™ Comm
@ TTM Comp

0
6¢§ & o ®
Q€ V) S {60
Figure 7: Running time breakdown for the HCCI dataset using 128
cores under different levels of compression.
shows that on low-compression, STHOSVD is faster than any of the
starting ranks of HOSI-DT to get to the desired threshold. However,
for high- and mid-compression HOSI-DT achieves speedups when
overshooting the ranks, specifically 1.9x for high-compression and
1.4x for low-compression, neither of which achieved better com-
pression. Figure 7 shows the breakdown times of these speedups.
However, HODI-DT achieves better compression with perfect and
under ranks for all error tolerances, but always requiring three
iterations to do so.

Figure 8 shows that we can typically obtain better compression
after three iterations. For example, overestimating the ranks for
low compression yields a speedup of 1.1 after 1 iteration, but we
do not obtain better compression. Similar to HCCI, three iterations
produces a smaller Tucker approximation but takes over twice as

1809

Pinheiro, Devarakonda, Ballard

Error vs Time Error vs Size
I I I I I

0.1 - 0.1} N

[}
0.05 -+ -0.05 wa.%a—a
0.01 —0.01 - ‘ -
10 20 30 0.5 1
Size (relative to STHOSVD)

Relative Error

Time (in seconds)

—a— HOSI-DT Over —*«— HOSI-DT Perfect
—&— HOSI-DT Under m STHOSVD

Figure 8: Progression of time, error, and relative size over 3 iterations
of rank-adaptive HOSI-DT on the SP dataset using 2048 cores.

le-01 Error 5e-02 Error
T T T T T T

== [ | =

20 H =

10 f =
(5] ) =
£ £

= = = =10 H =

5 —

0 =
S X S 2 X S
Qi\&e er&ec 042 ‘(\0‘5@ Qﬁ\be Qe‘&e‘* o ‘3‘08@
S

S
le-02 Error
I I I

Core Comm
Core Comp
Eig/QR
Contraction Comm
10 Contraction Comp
[ TT™ Comm

TTM Comp

Time

0 S N .

\y\e’e Qe&&ec O‘i Y\o%qo
Figure 9: Running time breakdown for the SP dataset using 2048
cores under different levels of compression.

long. However, for high compression, starting from perfect and
underestimates of the ranks achieve a 27% and 8% improvement
on compression over STHOSVD after two iterations, respectively.
In another example, Fig. 9 shows that when starting from perfect
estimates of the ranks for mid compression, HOSI-DT gets the
desired error tolerance and same compression ratio in less time
than STHOSVD, with HOSI-DT achieving a 1.4X speedup.

5 Conclusion

Based on the complexity analysis and experimental results, we
conclude that our parallel RA-HOSI-DT computes Tucker approxi-
mations of comparable error in less time than TuckerMPI’s imple-
mentation of STHOSVD in two important scenarios: (1) when large
individual tensor dimensions create sequential EVD bottlenecks,



Parallel Rank-Adaptive Higher Order Orthogonal Iteration

and (2) when individual ratios between input tensor and core tensor
dimensions are large. In the first case, because of the scalability of
RA-HOSI-DT, we observe very large speedups with large P. In the
second case, our theoretical analysis suggests a speedup roughly
proportional to n/r. However, we observe that while the number of
flops is reduced compared to STHOSVD, the local matrix computa-
tion performance degrades because the smallest matrix dimension
in the computation becomes r instead of n. That is, if the ranks
are very small, then local matrix computations with RA-HOSI-DT
run far below peak processor performance and are instead limited
by the memory bandwidth. This memory bandwidth bottleneck is
the reason RA-HOSI-DT loses scalability when using all cores on a
single node and is the main reason the theoretical computational
cost analysis doesn’t match empirical performance at scale.

RA-HOSI-DT requires an input estimate of the final core ranks.
While priori knowledge is not required, we observe that slight
overestimates of the final ranks yield sufficiently accurate solutions
often in the first iteration. When ranks are underestimated, HOOI
must iterate until an overestimate is discovered, after which a single
iteration yields convergence.

Furthermore, in solving the error-specified optimization problem,
we highlight that RA-HOSI-DT often identifies Tucker approxima-
tions with better compression ratios than STHOSVD. This is due
in large part to the flexibility afforded by the RA-HOSI-DT core
analysis step to shift ranks across modes to maximize overall com-
pression, as opposed to STHOSVD, which makes greedy decisions
at each mode. If compression ratio is more important than time,
taking more HOOI iterations can help to improve accuracy and
often reduce ranks further.

Acknowledgments

The authors would like to thank John Billos, who contributed signif-
icantly to MATLAB implementations of the algorithms in the early
stages of this project. This work is supported by the National Sci-
ence Foundation under grant CCF-1942892. This material is based
upon work supported by the US Department of Energy, Office of
Science, Advanced Scientific Computing Research program under
award DE-SC-0023296.

References

[1] Woody Austin, Grey Ballard, and Tamara G. Kolda. 2016. Parallel Tensor Compres-
sion for Large-Scale Scientific Data. In Proceedings of the 30th IEEE International
Parallel and Distributed Processing Symposium. 912-922. doi:10.1109/IPDPS.2016.
67

[2] Brett W. Bader, Tamara G. Kolda, et al. 2023. MATLAB Tensor Toolbox Version
3.6. Available online. https://www.tensortoolbox.org

[3] Wouter Baert and Nick Vannieuwenhoven. 2023. Algorithm 1036: ATC, An
Advanced Tucker Compression Library for Multidimensional Data. ACM Trans.
Math. Software 49, 2 (jun 2023), 1-25. doi:10.1145/3585514

[4] Grey Ballard, Alicia Klinvex, and Tamara G. Kolda. 2020. TuckerMPI: A Parallel
C++/MPI Software Package for Large-Scale Data Compression via the Tucker
Tensor Decomposition. ACM Trans. Math. Software 46, 2, Article 13 (June 2020),
31 pages. doi:10.1145/3378445

[5] Grey Ballard and Tamara G. Kolda. 2025. Tensor Decompositions for Data Science.
Cambridge University Press. https://tensortextbook.com

[6] Rafael Ballester-Ripoll, Peter Lindstrom, and Renato Pajarola. 2020. TTHRESH:
Tensor Compression for Multidimensional Visual Data. IEEE Transactions on
Visualization and Computer Graphics 26, 9 (2020), 2891-2903. doi:10.1109/TVCG.
2019.2904063

1810

—_

7]

(8]

—_

9]

(10]

[11

[12

[13

=
&

[15

[16

[17

oy
&

[19

[20

[21

[22

~
&

[24]

[25

[26

&
=

SC ’25, November 16-21, 2025, St Louis, MO, USA

Ankit Bhagatwala, Jacqueline H. Chen, and Tianfeng Lu. 2014. Direct numerical
simulations of HCCI/SACI with ethanol. Combustion and Flame 161, 7 (2014),

1826-1841. doi:10.1016/j.combustflame.2013.12.027
Venkatesan Chakaravarthy, Jee Choi, Douglas Joseph, Xing Liu, Prakash Murali,

Yogish Sabharwal, and Dheeraj Sreedhar. 2017. On Optimizing Distributed
Tucker Decomposition for Dense Tensors. In 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 1038-1047. doi:10.1109/IPDPS.2017.86
Venkatesan Chakaravarthy, Jee Choi, Douglas Joseph, Xing Liu, Prakash Mu-
rali, Yogish Sabharwal, and Dheeraj Sreedhar. 2017. On optimizing distributed
Tucker decomposition for dense tensors. In 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 1038-1047. doi:10.1109/IPDPS.
2017.86

Jee Choi, Xing Liu, and Venkatesan Chakaravarthy. 2018. High-performance
Dense Tucker Decomposition on GPU Clusters. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis
(Dallas, Texas) (SC ’18). IEEE Press, Piscataway, NJ, USA, Article 42, 11 pages.
http://dl.acm.org/citation.cfm?id=3291656.3291712

Saibal De, Hemanth Kolla, Antoine Meyer, Eric T. Phipps, and Francesco Rizzi.
2024. Hybrid Parallel Tucker Decomposition of Streaming Data. In Proceedings of
the Platform for Advanced Scientific Computing Conference (Zurich, Switzerland)
(PASC ’24). Association for Computing Machinery, New York, NY, USA, Article
20, 12 pages. doi:10.1145/3659914.3659934

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. 2000. On the best
rank-1 and rank-(ry, 2, ..., 1, ) approximation of higher-order tensors. SIAM
Jjournal on Matrix Analysis and Applications 21, 4 (2000), 1324-1342. doi:10.1137/
5089547989834699

Wolfgang Hackbusch. 2019. Tensor Spaces and Numerical Tensor Calculus (2nd
ed.). Springer International Publishing. doi:10.1007/978-3-030-35554-8

Arie Kapteyn, Heinz Neudecker, and Tom Wansbeek. 1986. An approach to
n-mode components analysis. Psychometrika 51 (1986), 269-275. do0i:10.1007/
BF02293984

Oguz Kaya and Yves Robert. 2019. Computing dense tensor decompositions with
optimal dimension trees. Algorithmica 81 (2019), 2092-2121. doi:10.1007/s00453-
018-0525-3

Hemanth Kolla, Xin-Yu Zhao, Jacqueline H. Chen, and N. Swaminathan. 2016.
Velocity and Reactive Scalar Dissipation Spectra in Turbulent Premixed Flames.
Combustion Science and Technology 188, 9 (2016), 1424-1439. doi:10.1080/00102202.
2016.1197211

Pieter M Kroonenberg and Jan De Leeuw. 1980. Principal component analysis of
three-mode data by means of alternating least squares algorithms. Psychometrika
45 (1980), 69-97. doi:10.1007/BF02293599

Zitong Li, Qiming Fang, and Grey Ballard. 2021. Parallel Tucker Decomposition
with Numerically Accurate SVD. In 50th International Conference on Parallel
Processing (ICPP °21). ACM, New York, NY, USA, 11. doi:10.1145/3472456.3472472
Linjian Ma and Edgar Solomonik. 2022. Accelerating alternating least squares
for tensor decomposition by pairwise perturbation. Numerical Linear Algebra
with Applications e2431 (2022), 1-33. doi:10.1002/nla.2431

Rachel Minster, Zitong Li, and Grey Ballard. 2024. Parallel Randomized Tucker
Decomposition Algorithms. SIAM Journal on Scientific Computing 46, 2 (2024),
A1186-A1213. doi:10.1137/22m1540363

Rachel Minster, Arvind K. Saibaba, and Misha E. Kilmer. 2020. Randomized Algo-
rithms for Low-Rank Tensor Decompositions in the Tucker Format. SIAM Journal
on Mathematics of Data Science 2, 1 (2020), 189-215. doi:10.1137/19M1261043
Anh-Huy Phan, Petr Tichavsky, and Andrzej Cichocki. 2013. Fast Alternating
LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations.
IEEE Transactions on Signal Processing 61, 19 (Oct 2013), 4834-4846. d0i:10.1109/
TSP.2013.2269903

Yuchen Sun and Kejun Huang. 2022. HOQRI: Higher-Order QR Iteration
for Scalable Tucker Decomposition. In ICASSP 2022 - 2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 3648-3652.
doi:10.1109/ICASSP43922.2022.9746726

Nick Vannieuwenhoven, Raf Vandebril, and Karl Meerbergen. 2012. A New
Truncation Strategy for the Higher-Order Singular Value Decomposition. SIAM
Journal on Scientific Computing 34, 2 (2012), A1027-A1052. doi:10.1137/110836067
Nico Vervliet, Otto Debals, Laurent Sorber, Marc Van Barel, and Lieven De Lath-
auwer. 2016. Tensorlab 3.0. http://www.tensorlab.net

Chuanfu Xiao and Chao Yang. 2024. RA-HOOI: Rank-adaptive higher-order
orthogonal iteration for the fixed-accuracy low multilinear-rank approximation
of tensors. Applied Numerical Mathematics 201, C (July 2024), 290-300. doi:10.
1016/j.apnum.2024.03.004

Kai Zhao, Sheng Di, Xin Lian, Sihuan Li, Dingwen Tao, Julie Bessac, Zizhong Chen,
and Franck Cappello. 2020. SDRBench: Scientific Data Reduction Benchmark
for Lossy Compressors. In IEEE International Conference on Big Data. 2716-2724.
doi:10.1109/BigData50022.2020.9378449



SC ’25, November 16-21, 2025, St Louis, MO, USA

Pinheiro, Devarakonda, Ballard

Appendix: Artifact Description/Artifact Evaluation

Artifact Description (AD)

A Overview of Contributions and Artifacts

A.1 Paper’s Main Contributions

C1 Parallelization of HOOI using the TuckerMPI library.

C2 Novel adaptation of HOOI to solve the error-specified formula-
tion of the Tucker approximation problem.

C3 Efficient memoization of the TTM computations across subiter-
ations of HOOL

C4 Novel use of subspace iteration to reduce parallel computational
cost of the SVD computations within HOOL.

C5 Demonstration of faster time-to-solution of HOOI compared to
STHOSVD for synthetic and scientific simulation datasets.

A.2 Computational Artifacts

A1 The TuckerMPI-HOOI code repository: https://doi.org/10.5281/
zenodo.16752648 which provides a tar archive of the im-
plementations of the proposed distributed-memory HOOI
algorithms and is used to generate all experimental results
to support contributions C;-Cs.

Artifact ID  Contributions Related
Supported Paper Elements
A C1-Cs Tables 1-2
Figure 1-5

Algorithms 3-5

B Artifact Identification
B.1 Computational Artifact A,

Relation To Contributions

This artifact corresponds to the TuckerMPI-HOOI library that im-
plements distributed-memory parallel variants of HOOI including
efficient computational kernels for TTM, SVD, and a novel error-
specified HOOI formulation for Tucker decomposition. This artifact
also corresponds to the synthetic experiments and Miranda experi-
ments. This artifact supports all contributions of the paper and is
used to generate experimental results.

Expected Results

One should expect to successfully compile the TuckerMPI library.
To run the HOOI and STHOSVD algorithms, we use a parameter
file which allows the user to specify the settings and otpimizations
used. An example of this parameter file can be seen in the Artifact
Execution section. Dimension Tree Memoization is a flag that
when set to true enables C3’s contribution. SVD Method is a flag that
when set to 2 enables C4’s contribution. HOOI-Adapt Threshold
is a float that enables Cz’s contribution when set to a float greater
than 0.

Expected Reproduction Time (in Minutes)

Following the steps described in Artifact Setup of this artifact, it
takes no more than 2 minutes to clone and compile the libary. One
could speed up the compiation process by specifying the number of

1811

processes used in the make command. The system we used suggests
one uses no more than 16 processes when doing so, at which point
it takes no more than 30 seconds to clone and compile the library.

Artifact Setup (incl. Inputs)

Hardware. The artifact described in this section was run on NERSC
Perlmutter (CPU partition) and is intended for use on distributed-
memory parallel systems. However, the library can be compiled
on any system which meets the software requirements detailed
next. Performance experiments were run on NERSC Perlmutter, so
access will be provided for artifact evaluation.

Software. We extend the TuckerMPI library, which is a distributed-
memory parallel library for Tucker decomposition, by implement-
ing the HOOI algorithms described in this work. TuckerMPI re-
quires the following software packages:

(1) MPI implementation

(2) BLAS implementation

(3) LAPACK implementation

(4) C++11 or greater

Datasets / Inputs. The STHOSVD and HOOI driver functions in
TuckerMPI facilitate synthetic data generation by providing con-
figurations (e.g. tensor dimensions and ranks) via a parameter file
passed to the driver.

Installation and Deployment. TuckerMPI uses the CMake build sys-
tem. First download the tar archive of the repository from Zenodo:
10.5281/zenodo.16752648 and extract it. To build the library, run
the following commands:

cd tucker-mpi-hooi

mkdir build

cd build

cmake ../src

make

Optionally, specify compilers explicitly by passing the

-DCMAKE _CXX_COMPILER=mpicxx and
-DCMAKE_C_COMPILER=mpicc flags to CMake. Our cmake
configuration uses the FindBLAS and FindLAPACK modules to
automatically link the BLAS and LAPACK libraries.

Artifact Execution

Create a parameter file with options for STHOSVD. Small scale
example of fixed-rank STHOSVD:

Print options = true

Print timings = true

Noise = 0.0001

SV Threshold = 0.0

Perform STHOSVD = true

# 4D grid with 8 processors

Processor grid dims =12 2 2

# decrease Global dims if limited by DRAM
Global dims = 100 100 100 100

Ranks = 10 10 10 10



Parallel Rank-Adaptive Higher Order Orthogonal Iteration

Call the STHOSVD MPI driver function using mpirun, mpiexec
or srun, specifying the number of MPI processes (should be the
product of the Processsor grid dims setting). We assume that
“srun” is used and the current working directory is the top-level
directory in the tucker-mpi-hooi repository and “STHOSVD.cfg”
is the parameter filename stored in the top-level directory. The
command to run the small scale STHOSVD experiment is:

srun -n 8 ./build/mpi/drivers/bin/sthosvd \
--parameter-file STHOSVD.cfg

Create a parameter file with the following options to run a small
scale example of HOOI with fixed-rank:
Print options = true

Print timings = true

Dimension Tree Memoization = false
HOOI Adapt core tensor gather type =
Noise = 0.0001

HOOI-Adapt Threshold = 0.0

HOOI max iters = 2

SVD Method = @

# 4D grid with 4 processors
Processor grid dims =1 2 2 1

# decrease Global dims if limited by DRAM
Global dims = 100 100 100 100

# True ranks of the tensor

Construction Ranks = 10 10 10 10

# Initial guess of ranks for the core tensor
Decomposition Ranks = 10 10 10 10

Call the HOOI MPI driver function:

srun -n 4 ./build/mpi/drivers/bin/hooi \
--parameter-file HOOI.cfg

false

The table below shows options required for each HOOI variant.

HOOI Variant Dimension Tree Memoization SVD Method
HOOI false 0
HOOI-DT true 0
HOSI false 2
HOSI-DT true 2

Toggle the Dimension Tree Memoization and SVD Method
options as needed to test different variants.

Artifact Analysis (incl. Outputs)

Running the STHOSVD and HOOI driver functions will produce
an output stream that is directed to STDOUT with high-level infor-
mation on the progress of the Tucker decomposition (e.g. for HOOI
the approximation error after each iteration).

The output stream can be inspected to verify that the correct
algorithm (e.g. STHOSVD or HOOI variant) is being run. Each
driver will begin by printing the parameter file options parsed (or
default options that are hardcoded in the driver source file). For
HOOI variants, the output stream will clearly identify which SVD
method is used and whether the dimension tree memoization is
enabled.

1812

SC ’25, November 16-21, 2025, St Louis, MO, USA

B.2 Scaling Experiments on Synthetic Data

Expected Results

This experiment will show that the parallel HOOI variants imple-
mented are faster and scale better than STHOSVD when the input
tensor is sufficiently low-rank. These experiments will generate and
perform Tucker decomposition of a synthetic 4-way tensor with di-
mensions 560x560X560x560 whose ranks are 10x10x10%10. Since
the ranks are known a priori, the decomposition is performed with
fixed-rank STHOSVD and HOOI variants. The results will show
that HOSI-DT is the fastest HOOI variant, attaining a speedup of
1.5% over STHOSVD and 2.9x over HOOI-DT. These experiments
will also show that HOSI-DT scales to 4096 cores on Perlmutter.
Qualitatively, the resulting scaling and running time breakdown
plots should look similar to Figures 2 and 3 in the paper.

Expected Reproduction Time (in Minutes)

Generating the SLURM submission scripts and parsing the outputs
takes about 1 minute. Total node time is O(10) hours to generate
CSV files for each algorithm, processor count, and processor grid
configuration. This estimate does not account for queuing time
on NERSC Perlmutter, which may vary depending on the system
load. This experiment does not require online monitoring once the
SLURM scripts have been submitted to the queuing system. Once
all experiments are completed, the post-processing Python scripts
CollectRank can be run to parse the outputs and generate the
plots. This takes about 1 minute.

Setup

Hardware. Our experiments were conducted on NERSC Perlmutter
(CPU partition). The system consists of 3072 compute nodes with
dual-socket AMD EPYC 7763 64-core CPUs. Each socket has 4 Non-
Uniform Memory Access (NUMA) regions for a total of 8 NUMA
regions per node. Each NUMA region has 64 GB of DRAM memory,
therefore each CPU socket has 256 GB of DRAM for, a total of 512
GB per node.

Software. The software requirements are the same as Appendix B.1,
but with the additional requirement of Python to run scripts to
generate SLURM submission scripts and parse CSV timing files.
The parsed CSV files are then used to plot Figures 2 and 3 using
PGFPlots/TikZ, which requires a LaTeX environment (e.g. Overleaf).
More details are provided in the A; Artifact Evaluation.

Datasets / Inputs. The synthetic datasets are generated by the HOOI
and STHOSVD drivers using random number generators. No addi-
tional input files are required.

Execution

Step 0 Load python 3.11
(a) module load python/3.11
Step 1 Run python scripts to generate experiment directories:
(a) cd python
(b) python ScaleScript.py. The default experiment this
generates is a strong scaling experiment on a 4way syn-
thetic tensor 560 X 560 X 560 X 560 with a core size of
10 X 10 X 10 X 10 in single precision. Which can be found
in the newly created experiments folder.



SC ’25, November 16-21, 2025, St Louis, MO, USA

Step 2 Submit slurm jobs
(a) cd ../experiments/4way_560_10_Single/OutSlurms
(b) for script in ../SlurmScripts/N*.slurm; do
sbatch "$script"; done. This submit all slurm jobs
in the SlurmScripts folder, one slurm script per data
point (i.e. number of processor). The default settings in
ScaleScript.py will generate a single-node scaling ex-
periment with 13 data points (p = 1 to p = 4096 in incre-
ments of powers of two).
Step 3 Once jobs finish, prostprocess data using python scripts
(a) cd python
(b) python CollectScaleScript.py
Step 4 Plot using latex plotting scheme
(a) cd latex
(b) Compile synthetic_scaling.tex and
synthetic_breakdown. tex to reproduce the 4way exper-
iments in Figure 2 (up to p = 4096) and Figure 3. See the
Miranda experiments subsection in the Artifact Evalua-
tion for details on how to reproduce the plots as NERSC
Perlmutter does not provide a LaTeX environment.

Analysis

After the jobs of step 2 have returned, we will be left with several
CSV output files from our experiments. These provide extensive
information for our HOOI variants and STHOSVD algorithms. The
CSV files can be automatically parsed and preprocessed by using the
CollectScaleScript.py script and the LaTeX files to reproduce
Figures 2 and 3.

B.3 Experiments on Miranda Simulation Data
Relation To Contributions

Experiments in this section will use the Miranda scientific dataset
which supports contribution Cs and paper elements Figure 4 and 5.

Expected Results

The results of these experiments will show that HOSI-DT is faster
than STHOSVD at compressing the Miranda dataset while achieving
similar approximation error. Experiments will also highlight that
the novel core analysis which allows HOSI-DT to adapt ranks from
one iteration to the next is cheap and effective.

Expected Reproduction Time (in Minutes)

Downloading the Miranda dataset (107 GB compressed) takes about
40 minutes to download with an average download speed of 50 MB/s
on NERSC Perlmutter. Decompressing the gzipped tar file takes
about 15 minutes. Postprocessing the Miranda dataset takes about
30 minutes. Once the dataset is downloaded and decompressed, the
time to run experiments is O (10) hours. Experiments do not require
online monitoring after the SLURM scripts have been submitted to
the queuing system. Once all experiments are completed, then the
post-processing Python scripts can be run to parse the outputs and
generate the plots. This takes about 5 minutes.

1813

Pinheiro, Devarakonda, Ballard

Setup

Hardware/Software. These experiments use the same hardware and
software as Appendix B.2.

Datasets / Inputs. The Miranda dataset is part of the Scientific Data
Reduction Benchmarks repository (https://sdrbench.github.io/).
It can be accessed at https://g-8d6b0.fd635.8443.data.globus.org/
ds131.2/Data-Reduction-Repo/raw-data/Miranda/SDRBENCH-
Miranda-3072x3072x3072.tar.gz.

Execution

Step 0 Load python 3.11
(a) module load python/3.11
Step 1 Run scripts to download Miranda dataset and generate ex-
periment directories:
(a) cd python
(b) ./download-setup-miranda.sh. This will download the
Miranda dataset, decompress it, and preprocess the data
into a TuckerMPI readable format. The script assumes
that a SCRATCH environment variable is defined on the
system. This variable is defined on NERSC Perlmutter. We
recommend running this script in a screen or tmux session
as it will take about 1 hour to download and decompress
the dataset.
(c) python RankScript.py. Generates all TuckerMPI input
files and SLURM scripts for the experiments.
Step 2 Submit slurm jobs
(a) cd ../experiments/Miranda/OutSlurms
(b) for script in $(ls ../SlurmScripts/x.slurm |
grep -v ’Default’); do shatch "$script"; done.
This submit all slurm jobs. The experiments will compare
HOSI-DT and STHOSVD algorithms and generate outputs
that will reproduce Figures 4 and 5.
Step 3 Once the jobs finish, postprocess data using python scripts
(a) cd python
(b) python CollectRankScript.py
Step 4 Plot using LaTeX/TikZ
(a) cd latex
(b) Compile miranda_error.tex to reproduce Figure 4 and
miranda_breakdown. tex to reproduce Figure 5. See the
synthetic experiments subsection in the Artifact Evalua-
tion for additional details on how to reproduce the plots as
NERSC Perlmutter does not provide a LaTeX distribution.

Analysis

After the jobs of step 2 have returned, we will be left with several
CSV output files from our experiments. These provide extensive
information on using the HOSI-DT and STHOSVD algorithms to
compress the Miranda dataset using three error thresholds. The
CSV files can be automatically parsed and preprocessed by using
the CollectRankScript. py script and the LaTeX files to reproduce
Figures 2 and 3.



Parallel Rank-Adaptive Higher Order Orthogonal Iteration

Artifact Evaluation (AE)

Prerequisites. Evaluation of Appendices B.2 and B.3 in the Artifact
Description (AD) requires access to the NERSC Perlmutter system
in order to reproduce experimental results corresponding to paper
elements Figures 2-5.

The AD/AE committee should reach out to the authors to obtain
access to the NERSC Perlmutter system before proceeding with the
evaluation of the synthetic and Miranda experiments. Source code
can be build and tested on a different machine/system provided that
software prerequisites of the TuckerMPI-HOOI library are met.

C.1 Computational Artifact A;
Artifact Setup (incl. Inputs)

Access NERSC Perlmutter via SSH using a preferred command line
interface.

ssh <username>@perlmutter.nersc.gov

module load PrgEnv-gnu/8.5.0

cd $SCRATCH

Perform steps described in Installation and Deployment of A; arti-
fact description. This will clone and compile the TuckerMPI-HOOQI
library in the scratch directory on Perlmutter.

Artifact Execution

Running the small scale STHOSVD and HOOI experiments requires
launching an interactive compute job on Perlmutter. To do so, run
the following command:

salloc -N 1 -n 8 --qgos interactive --mem 256G \

-t 00:30:00 --constraint cpu \

--account <NERSC-allocation-number>

This command will allocate an interactive job using one node with
8 cores for 30 minutes. Once the job is allocated, perform steps
described in Artifact Execution of A; in the AD to verify that the
TuckerMPI-HOOI library is functional.

C.2 Scaling Experiments on Synthetic Data

Setup

Evaluation of Appendix B.2 in the AD describes steps to reproduce
single-node scaling experiments (scaling up to p = 4096) shown
in Figure 2 (and single-core bar plot in Figure 3) for the 4-way
synthetic input tensor. We describe necessary modifications to the
ScaleScript.py and CollectScaleScript.py files to generate a
truncated set of scaling data points below:
e Overwrite the list proc_scale (Line 45 of ScaleScript.py)
with a list of desired number of processors
(e.g. proc_scale = [1, 256, 1024, 4096]). Note that
p =1and p = 4096 must be included in the list to reproduce
Figure 3.
e Overwrite the list
proc_scale (Line 129 of CollectScaleScript.py) with
the same list of processors as in proc_scale
from ScaleScript.py.
e Modify the xtick and xticklabels variables (Lines 31-32
of synthetic_scaling. tex) file to match the list of proces-
sors in proc_scale.

1814

SC ’25, November 16-21, 2025, St Louis, MO, USA

Execution

Follow the steps described in Artifact Execution of Appendix B.2 in
the AD to run the experiments and generate the output CSV files.

Analysis

The output CSV files will be generated in the
experiments/4way_560_10_Single subfolder of the TuckerMPI-
HOOI repository. We recommend proceeding to the Miranda ex-
periments in the AE before attempting to reproduce Figures 2 and
3, as a LaTeX installation is required. We recommend creating a
zipped tar archive of the experiments folder and transferring it to a
local machine with a LaTeX distribution.

C.3 Experiments on Miranda Simulation Data

Setup

The Artifact Evaluation for the Miranda experiments in the AD
describes steps to reproduce experiments associated with Figures
4 and 5. Performing these experiments requires downloading the
Miranda dataset and preprocessing it. We provide a bash script
to do so in the python subdfolder of the TuckerMPI-HOOI reposi-
tory. This bash script assumes that a SCRATCH environment vari-
able is defined on the system. This variable is already defined on
NERSC Perlmutter. However, modifications to the bash script may
be required if running on a different system. Once the dataset is
downloaded and preprocessed, a Miranda_by_slices folder will
be created in the SCRATCH directory. The RankScript. py script
will assume the above path to the Miranda dataset.

Execution

Follow the steps described in Appendix B.3 of the AD to run the
experiments and generate the output CSV files.

Analysis

The output CSV files will be generated in the
experiments/Miranda/ subfolder of the TuckerMPI-HOOI repos-
itory. Once CSV files for the synthetic and Miranda experiments
are generated, we recommend creating a zipped tar archive of the
experiments folder:

e tar -czvf hooi-experiments.tar.gz ./experiments
This archive file can be transferred to a local machine with a LaTeX
distribution using a file transfer protocol (e.g. SCP, SFTP, Globus)
or the File Browser in the NERSC IRIS Utilities. The latter is only
possible for small file sizes.

We recommend downloading the TuckerMPI-HOOI (10.5281/
2en0do.16752648) on a local machine with a LaTeX distribution and
transferring the hooi-experiments. tar.gz archive into the repos-
itory’s top-level directory. Once the archive has been transferred,
it can be extracted using the following command:

e tar -xzvf hooi-experiments.tar.gz
This will create the experiments subfolder in the TuckerMPI-HOOI
repository with the required CSV files to reproduce Figures 2-5.
Once the CSV files are available, the LaTeX files in the latex sub-
folder can be compiled to reproduce Figures 2-5, using your typical
LaTeX compilation commands (latex, pdflatex, latexmk, etc.).



SC ’25, November 16-21, 2025, St Louis, MO, USA

Pinheiro, Devarakonda, Ballard

Reproducibility Report

D Overview of Reproduction of Artifacts

The following table provides an overview of each computational
artifact’s reproducibility status. Artifact IDs correspond to those in
the AD/AE Appendices.

Artifact ID Available Functional Reproduced
Aq ° ° o
Badge awarded yes yes no

E Reproduction of Computational Artifacts

E.1 Timeline

The experiments were conducted between September 10, 2025, to
September 18, 2025.

E.2 Computational Environment and Resources

In order to evaluate the results in the paper, the time duration as
stated exceeded the time allotted for reproducibility.

E.3 Details on Artifact Reproduction

o The TuckerMPI-HOOI code repository was accessible at the
Zenodo link. Artifact Setup was exactly as described the the
ADAE Report.

o The build and execution of the artifact was attempted initially
on a HPE EX40 system at Sandia National Laboratories. The
execution of the experiment on the Intel Sapphire Rapids
architecture was unsuccessful, due to the differences in node
architecture from that which is stated in the ADAE report.

e Upon acquisition of an account on Perlmutter at National
Energy Research Scientific Computing Center (NERSC), the

1815

named system in the ADAE report, functional evaluation
of the artifact was achievable, however, there were several
batch submissions that experienced out-of-memory errors,
resulting in data gaps.

o The general instructions for software and data acquisition
works as described.

e The automation that generates scheduler scripts worked as
described to produce usable scripts on the target system.

e The runtime and build time environment was exactly as
described, and the artifacts that conduct the scaling, and
comparative analyses of the results execute without error.

e Therefore, the reviewer achieved functional evaluation of
this experiment’s primary claim, and is awarded the Results
Evaluated Badge.

Disclaimer: This Reproducibility Report was crafted by volunteers with the goal
of enhancing reproducibility in our research domain. The time period allocated for the
reproducibility analysis was constrained by paper notification deadlines and camera-
ready submission dates. Furthermore, the compute hours in the shared infrastructure
(e.g., Chameleon Cloud) available to the authors of this report were limited and re-

stricted the scope and quantity of experiments in the review phase. Consequently, the
inability to reproduce certain artifacts within this evaluation should not be interpreted

as definitive evidence of their irreproducibility. Limitations in the time allocated to
this review and the compute resources available to the reviewers may have prevented
a positive outcome. Furthermore, reviewers assess the reproducibility of the artifacts
provided by the authors; however, they are not accountable for verifying that the

artifacts support the main claims of the paper.



