ADVANCES IN TENSOR DECOMPOSITIONS: FAST MATRIX
MULTIPLICATION ALGORITHMS AND PARALLEL ADAPTIVE
COMPRESSION TECHNIQUES

BY

JOAO VICTOR DE OLIVEIRA PINHEIRO

A Thesis Submitted to the Graduate Faculty of
WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES
in Partial Fulfillment of the Requirements
for the Degree of
MASTER OF SCIENCE
Computer Science
May 2025

Winston-Salem, North Carolina

Approved By:
Grey Ballard, Ph.D., Advisor

Aditya Devarakonda, Ph.D., Chair
Frank Moore, Ph.D.

Ramakrishnan Kannan, Ph.D.

ACKNOWLEDGEMENTS

Antes de mais nada gostaria de dedicar este trabalho aos meus pais, que sob muito
sol, fizeram-me chegar até aqui, na sombra. Tudo que eu tenho eu devo a eles,
em compensacao, tudo o que eu faco, faco pensando neles. Carlo Giovanni e Doris
Pinheiro, amo vocés mais do que minha propria vida. Desejo a minha irma, Ana

Carolina Pinheiro, o mundo inteiro, pois ela merece isso tudo e um pouco mais.

I would like to thank the Wake Forest Computer Science Department for funding
my graduate work. This work was funded by the NSF Grant No. CCF-1942892
and OAC-210692. T am truly appreciative of the Sparsitute for fostering a wonderful

environment of talented and creative people.

I am thankful to Dr. Paul Pauca for being my first ever computer science professor
as he was fundamental for my upbringing in this field. Even after finishing his assign-
ments quite early on he would always encourage my intellectual curiosity. I would
like to thank Dr. Samuel Cho for pushing me outside my comfort zone multiple times
and teaching many important lessons in the process. I would like to thank Dr. Errin
Fulp for always being a comforting person to talk to in the good and bad times.
His door was always open, and a friendly conversation always awaited on the other
side. I would like to thank Dr. Pete Santago for his steady guidance realism when I
needed it most, and bringing humor to our everyday conversations. I would like to
thank Dr. Daniel Canas, whose tough words in our early interactions challenged me
more than he may have realized. Today, I am grateful not only for the motivation he
sparked, but also for the friendship and respect we now share. I would like to thank
Dr. Natalia Khuri for her no-nonsense wisdom and the countless practical lessons she
shared with me. I would like to give special thanks to Cody Stevens, whose impact
on this department—and on me personally—is immeasurable. Our countless conver-
sations, both technical and personal, fueled my passion and kept me going when I

needed it most.

ii

Prior to my move to the Department of Computer Science I was an undergraduate
student in the Department of Mathematics. I would now like to thank the following
people from that Department. I would like to express my tremendous gratitude to
Dr. Lynne Yengulalp for giving my first ever job in the Math and Stats Center. This
tutor position she has given me has ignited my passion for teaching and helping others.
I would like to thank Dr. Stephen Robinson for his kindness and friendliness outside
of class, and it was during his course that I realized that my true passion lied in the
Mathematics. I would like to thank Dr. Pratyush Mishra for being an exceptional
research collaborator. Though we often approached the same problems from the
distinct lenses of mathematics and computer science, it was through navigating that
difference that I learned the true art of communicating ideas across disciplines. I
would like to thank Dr Leandro Lichtenfelz and Dr. Leonardo Cella as they have
shown me the difference it makes seeing someone of equal ethnical background as a
rolemodel. I would like to thank Dr. John Gemmer, my undergraduate advisor, whose
honest and thoughtful guidance played a key role in both my decision to pursue a
master’s in computer science and my Ph.D. applications this cycle. He always knew
exactly what to say—mnever sugarcoating, never discouraging—just clear, grounded
advice that helped me find the path where I truly belong.

Most importantly, I would like to thank my committee for supporting me in every
step of the way. I would like to thank Dr. Ramakrishnan Kannan, whose kindness
and humility left a lasting impression on me during my first academic conference. At
a time when I felt out of place and overwhelmed, his welcoming presence reminded
me that academia is not only about research, but also about community. I would
like to thank Dr. Frank Moore for not only always laughing the hardest at my jokes,
and for his transparency and help in crucial times. I thought I knew how to code
until I begain working with Dr. Aditya Devarakonda. Through our work together,
he taught me what it means to write code at a research level with great rigor and

purpose. Last, but not least, is Dr. Grey Ballard. I have a feeling that in my entire

iii

life, I will meet few people like him. Just witnessing his genuine passion for what he
does—teaching, researching, and mentoring—is simply indescribably inspiring. I am

truly grateful and honored to have been mentored by him.

I couldn’t possibly have made it without all the friends that were part of my life,
especially for the past two years. I would like to thank all my friends from both cohorts
[was a part of. Especially Cade Wiley, Nikhil Rajkumar, Ziyue (Parry) Yang, William
Bailey, Alejandro Gonzalez Rubio, e meu irmao Raniery Mendes. Additionally, I am
truly grateful to have met the amazing Whitener family, particularly Nathan Whitener
who has always been by my side since day one of this program. I also dedicate this
work to my amazing partner, Andie Barnes, one of the most hardworking, intelligent,

and kindhearted people I have ever had the pleasure of knowing.

v

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS ... e
LIST OF ABREVIATIONSo
ABS T R A CT .

Chapter 1 Introduction..........
1.1 Tensors and Their Subparts
1.1.1 What Is A Tensor?
1.1.2 Slices and Fibers o0
1.1.3 Tensor Mode-k Unfoldings
1.1.4 Types of Tensor Multiplication
1.2 Tensor Decompositions
1.2.1 Kruskal Tensors and the CP Decomposition

1.2.2 Tucker Tensors and The Tucker Decomposition

Chapter 2 Search For Fast Matrix Multiplication Algorithms..........
2.1 Matrix Multiplication Algorithms
2.1.1 Fast Matrix Multiplication Algorithms
2.1.2 The Matrix Multiplication Tensor
2.1.3 Damped Gauss Newton Optimization for CP Decompositions

2.2 Cyclic Invariance o

[e

18
19
21

23
24
24
28
32

2.2.1 Cyclic Invariant Matrix Multiplication Algorithms 37

2.2.2 Adapting CP_DGN to Cyclic Invariance 41

2.2.3 Heuristics and Our Findings 45

2.3 Further Structure in Matrix Multiplication Algorithms 48
Chapter 3 Parallel Rank-Adaptive HOOI 50
3.1 Tucker Algorithms 54
3.1.1 ST-HOSVD 55

3.1.2 Classic HOOI 56

3.1.3 HOOTI’s Dimension Trees Optimization 58

3.1.4 HOOQOI’s Subspace Iteration Optimization 60

3.1.5 HOOTI’s Adaptive Rank Optimization 61

3.2 The TuckerMPI Library 64
3.2.1 TuckerMPI’s ST-HOSVD 64

3.2.2 TuckerMPI's HOOI 66

3.2.3 TuckerMPI's Dimension Tree 69

3.2.4 TuckerMPI’s Subspace Iterations 70

3.2.5 TuckerMPI’'s Adaptive Rank 72

3.3 Results. 73
3.3.1 Strong Scaling on Synthetic Tensors 76

3.3.2 Performance on Simulation Datasets 82
CONCLUSION ... 91
REFERENCES ... 94
CURRICULUM VITAE e 97

vi

LIST OF ILLUSTRATIONS

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

Tensors of orders one, two, and three 2
Tensors of orders four and five 4
Two-way slices of a 3-way tensor 5
Fibers of a 3-way tensor 6
Unfoldings of a 3-way tensor 7
Mode-1 TTM 11
Mode-2 TTM o 12
Mode-3 TTM 14
The CP Decomposition 19
A 3-way Tucker Tensor Diagram 21
Classic 2 by 2 Matrix Multiplication Algorithm 25
Classic Strassen’s Algorithm 26
Permuted Strassen’s Algorithm 27
Variant Strassen’s Algorithm 28
Exhaustive Search of Fast MatMul Algorithms 29
Matrix Multiplication in Tensor Format 30
A comparison of classic Strassen’s algorithm 32
Cyclic Invariance in Strassen’s Algorithm 38
Different types of Cyclic Invariance in Strassen’s Algorithm 39

vil

2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Cyclic Invariance in a KTensor 40

CP Decomposition Diagram with Cyclic Invariant Structure 41
The Tensor Decomposition Trade-Off 51
A 6-way Dimension Tree L. 59
Adaptive HOOI 61
3-way Strong Scaling L L 7
4-way Strong Scaling Lo 78
Running Time Breakdown 3way Sunthetic Dataset 80
Running Time Breakdown 4way Sunthetic Dataset 80
Miranda Dataset - Progression of Time, Trror, and Relative Size . . . 84
Miranda Dataset - Running Time Breakdown 85
HCCI Dataset - Progression of Time, Error, and Relative Size 87
HCCI - Running Time Breakdown 88
SP Dataset - Progression of Time, Error, and Relative Size 89
SP Dataset - Running Time Breakdown 90

viii

LIST OF ABREVIATIONS

CP Decompositions

CP: Canonical Polyadic

Tucker Decompositions

DT: Dimention Trees

EVD: Eigenvalue Decomposition

HOOI: Higher Order Orthogonal Iterations

HOSI: Higher Order Subspace Iterations

HOSVD: Higher Order Singular Value Decomposition

LLSV: Left Leading Singular Values

ST-HOSVD: Sequentially Truncated Higher Order Singular Value Decomposition

SVD: Singular Value Decomposition

ix

ABSTRACT

Tensors are essential in modern-day computational and data sciences. This work
presents recent advances in tensor decompositions, which are techniques that break
down complex high-dimensional arrays into smaller structured components. There

are two projects presented in this thesis, each with its own abstract and chapter.

Searching For Cyclic Invariant Fast Matrix Multiply Algorithms using
the CP Decomposition: Fast matrix multiplication algorithms correspond to exact
CP decompositions of tensors that encode matrix multiplication of fixed dimensions.
This 3-way matrix multiplication tensor has cyclic symmetry: the entry values are
invariant under cyclic permutation of the indices. The CP decomposition of Strassen’s
original fast matrix multiplication algorithm for 2x2 matrices is cyclic invariant, which
means a cyclic permutation of the CP factors results in the same CP components,
just in a different order. We describe how to search for cyclic invariant solutions
using the damped Gauss-Newton optimization method along with heuristic rounding
techniques. We not only summarize the algorithms discovered so far but also attempt
to search for further symmetries in these algorithms by describing the requirements
for an algorithms to admit such symmetries.

Parallel Rank-Adaptive Higher-Order Subspace Iteration for the Tucker
Decomposition: Higher Order Orthogonal Iteration (HOOI) is an iterative algo-
rithm that computes a Tucker decomposition of fixed ranks of an input tensor. In
this work we modify HOOI to determine ranks adaptively subject to a fixed ap-

proximation error, apply optimizations to reduce the cost of each HOOI iteration,

and parallelize the method in order to scale to large dense datasets. We show that
HOOI is competitive with the Sequentially Truncated Higher Order Singular Value
Decomposition (STHOSVD) algorithm, particularly in cases of high compression ra-
tios. Our proposed rank-adaptive HOOI can achieve comparable approximation error
to STHOSVD in less time, sometimes achieving a better compression ratio. We
demonstrate that our parallelization scales well over thousands of cores and show
using three scientific simulation datasets that HOOI outperforms STHOSVD in high-
compression regimes. For example, for a 3D fluid-flow simulation dataset, HOOI
computed a Tucker decomposition 82x faster and achieved a compression ratio 50%

better than STHOSVD’s.

xi

Introduction

1.1 Tensors and Their Subparts

1.1.1 What Is A Tensor?

There is no widely agreed upon definition of a tensor; different fields define it differ-
ently. For the purposes of this work, we define tensors through the definition widely
used in the field of computer science. A tensor is a d-way array, where d is referred
to as the order of the tensor. We use the following notational conventions. The
set of real values is denoted as R. Letters m,n,p,q,r are used to represent sizes
(or simply ny,---,ng) and letters 4, j, k, ¢ are used to represent indices (or simply
i1, ,iq). For the sake of simplification, let [n] = [1,--- ,n|, and furthermore let

Im] @ [n] ={(4,7) | i € [m], j € [n]}. Some lower order tensors have other names:

e A scalar is a ‘zero-dimensional’ tensor. This is any number x € R.

e A vector is a one-dimensional array of scalars. This is visualized in figure 1.1a.

We represent vectors by lowercase boldface roman letters. If x is a real-valued
vector of size n, then we write that x € R". Entry i € [n] of x is denoted as
x(7), or compactly as x;. A vector is a tensor of order 1. Instead of referring to

them as 1-way tensors, they will simply be referred to as vectors.

e A matrix is a two-dimensional array of scalars, such as a collection of vectors.
This is visualized in figure 1.1b. We represent matrices by uppercase boldface
roman letters. If X is a real-valued matrix of size m x n, then we write X €
R™ " The matrix entry X(i,j) represents the i'" entry of column vector j.
More generally, entry (i,7) € [m] ® [n] of X is denoted as X (i, j) or compactly
as x; ;. A matrix is a tensor of order 2. Instead of referring to them as order 2

tensors, they will simply be referred to as matrices.

b

n|[x m X m X
—
1 n n
a) Vector x € R" is a b) Matrix X € R™*" is a ¢) Tensor X € R™*"*P ig g
(a)
1-way tensor 2-way tensor 3-way tensor

Figure 1.1: Tensors of orders one, two, and three

If we have a three-dimensional array of scalars, then we have a higher-order tensor.

Tensors of order 3 or greater are denoted by uppercase mathematical calligraphy

letters: X. This is visualized in figure 1.1c. If A is a real-valued tensor of size
m x n X p, then we write X € R™*"*P, For instance, given a set of m objects, each of
which has n features, measured under p different scenarios, the tensor entry X (3, j, k)
represents the ;™ feature of object i measured in scenario k. More generally, entry
(i,j,k) € [m] ® [n] @ [p] of X is denoted as X (i, j, k) or compactly as x; ;5. We refer
to each dimension as a mode. Of a 3-way tensor, we say that mode 1 is of size m,
mode 2 of size n, and mode 3 of size p. If all modes have the same size, we call this

tensor cubical or refer to it as a tensor with uniform dimensions.

As mentioned earlier, any tensor of order greater than or equal to three is simply
referred to as a higher-order tensor. But we begin to run out of letters to describe its
size and index its modes. This is when we resort to subscripts mentioned earlier when
notation was discussed. Figure 1.2 illustrates 4-way and 5-way tensors. There, we
can visualize the recursive nature of tensors. A 4-way tensor is can be visualized as
an array of 3-way tensors. Similarly, a 5-way tensor can be visualized as a matrix of
3-way tensors. In applications, a simulation in 3 spatial dimensions through time that
tracks a certain number of variables produces a 5-way tensor of data. To consolidate

some of this information, we refer to table 1.1.

ny ni
na 3 Na 3
i n
(a) A 4D Tensor (b) A 5D Tensor
X c Rn1><n2><n3><n4 X c R7n><ng><ng><n4><n5

Figure 1.2: Tensors of orders four and five

Description Size Order Notation Entry

Scalar 1 0 x x

Vector n 1 X x(i) or x;

Matrix m X mn 2 X X(i,7) or x;j

3-way tensor m X mn X p 3 X X(i,7,k) or @,

4-way tensor nq X ng X ng X ny 4 X X (i1,19,13,14) OF Tiyigisis
d-way tensor nq X ng X -+ X ng d X X (91,92, ..+, 14) OF Tijiyiy

Table 1.1: Tensor Notation by Order

1.1.2 Slices and Fibers

A slice of a 3-way tensor X € R™*"*P ig a 2-way subtensor (which is a matrix). The
i*" horizontal slice is a matrix of size n x p given by X(i,:,:). The j** lateral slice
is a matrix of size m x n given by X(:,7,:). The k'" frontal slice is a matrix of size
m x n given by X(:,:, k). The three types of slices for 3-way tensors are shown in
figure 1.3.

The concept of slices is generalizable for higher-order tensors of order greater than

(a) Horizontal Slices X(i,:,:) (b) Lateral Slices X(:, 7,) (c) Frontal Slices X(:,:, k)

Figure 1.3: Two-way slices of a 3-way tensor

or equal to 4, those are called hyperslices. Tensor fibers are the analogs of rows and
columns of matrices. The main difference between matrx rows and columns and
tensor fibers is that tensor fibers are always oriented as column vectors when used in

calculations. For a 3-way tensor, of size m x n X p, we have the following:

e The mode-1 fibers of length m, also known as column fibers, range over all
indices in the first mode, holding the second and third indices fixed. In other
words, there are np column fibers of the form x.;;, € R™. This can be visualized

on Figure 1.4a.

e The mode-2 fibers of length m, also known as row fibers, range over all
indices in the second mode, holding the first and third indices fixed. In other
words, there are mp row fibers of the form x;., € R™.This can be visualized on

Figure 1.4b.

e The mode-3 fibers of length m, also known as tube fibers, range over all

indices in the third mode, holding the first and second indices fixed. In other

words, there are mn tube fibers of the form x;;. € RP. This can be visualized

on figure 1.4c.

| A——

(a) Column Fibers x.j, (b) Row Fibers x;. (c) Tube Fibers x;;.

Figure 1.4: Fibers of a 3-way tensor

1.1.3 Tensor Mode-k Unfoldings

The elements of a tensor can be rearranged to form various matrices in a procedure
referred to as unfolding, also known as matricization since the result is always a
matrix. A particular unfolding of interest is the mode-k unfolding which is defined
as a matrix whose columns are the mode-k fibers of that tensor. The notation for a
mode-£ unfolding of a tensor X is X(;). Figure 1.5 illustrates the mode-k unfoldings

of a 3-way tensor.

1.1.4 Types of Tensor Multiplication

There exists a variety of tensor operations. Given that multiplication involves two
entities, this subsection aims to systematically explore the different forms of tensor

multiplication by incrementally increasing the dimensionality of the operands. For

6

(a) Mode 1 Fibers (b) Mode 1 Unfolding X;
A
—
n l
n
(c) Mode 1 Fibers (d) Lateral Slices Xo
D

(e) Mode 3 Fibers (f) Frontal Slices X3

Figure 1.5: Unfoldings of a 3-way tensor

instance, the multiplication of two order-zero tensors is trivial, as it corresponds to
the multiplication of two scalars. By increasing the dimensionality on one side of
the multiplication while keeping the other fixed, we arrive at the multiplication of an
order-zero tensor with an order-one tensor—that is, a scalar and a vector. In this
case, the operation simply scales the entries of the vector by the scalar. Proceeding
further, we consider the multiplication of two order-one tensors, i.e., vector-vector
products. In this context, two primary products are defined: the inner product and

the outer product, both of which are described below. As we explore these tensor

multiplication types, two key concepts emerge: the matching of dimensions and the

contraction of those matched dimensions.

Vector Inner Products

The inner product of two same-sized vectors a,b € R"™ produces a scalar, is denoted

as (a,b) = ab, and is defined as

by N
(a,b) =a’b = [a; - ap] = Zaibi- (1.1)
i=1
bn

The vector 2-norm is defined as the square root of the inner product of a vector with

itself: y/(a,a). The computational complexity of vector inner products is O(n).

Vector Outer Products

In contrast to vector inner products, which are a reductive operation generating a
scalar, vector outer products are an expansive operation that generates a matrix.
Vector outer products are defined for multiple vectors, which is why we avoid the
common notaion of abT. We start by defining the outer products of two vectors.

Given two vectors a € R™ and b € R™, their vector outer product is defined as

C =aob e R™", where ¢;; = a;b;, ¥(i,j) € [m] ® [n], or

a1b1 R albn ai
= | : [51 bni|' (1.2)

ambl ambn Qm
Therefore, the outer product of two vectors generates a 2-way tensor. In general,
the outer product of d vectors generates a d-way tensor, and it is written as X =
X1 0 ---0Xg. The computational complexity of the outer product of two vectors of

size m and n respectively is O(mn). In general, the computational complexity of d

L : d
vectors of respective size of ny,--- ,ng is O([[._; na).

Matrix-Vector Products

Given a matrix A € R™*" and vector x € R", the matrix-vector product is defined

as

n

y = Ax € R™, where y; = Za,-jxj for all ¢ € [m], or

Jj=1
1171 + - + A1pTy aiy o A 1
- (1.3)
Am1T1 + -+ AmnTn Am1 " Qmnp Ty

The computational complexity of the matrix-vector product is O(mn).

Matrix-Matrix Products

Given two matrices A € R™*P and B € RP*", the matrix-matrix product is defined

as

p
C=AB € R™", where c;j = Y anby;, (i, j) € [m] @ [n]. (1.4)
k=1
The computational complexity of the matrix-matrix product is O(mnp). In gen-

eral, the computational complexity of multiplying two same-sized matrices of size n

by n is O(n?). A simple and yet noteworthy example is 2 by 2 matrix multiplication:

a11 aig b1 bio . a11011 + a12b21 a11b12 + ai2ba (1 5)

Qo1 A22 ba1 Do a21011 + az2bo1 ag1bia + agbas

which shows that matrix multiplication is performed by inner products of all pairs of

the rows of A with the columns of B.

Tensor-Times-Matrix (TTM) Products

The tensor-times-matrix (TTM) product is a mode-wise multiplication denoted as
Y = X X, A where X is a tensor, k is the mode for the TTM, and A is a matrix. This
product can be transformed into a matrix-matrix product using tensor unfoldings, as
we can define the product as Y ;) = AX(;). As the columns of a mode-k unfolding are
the fibers of mode k, we can also interpret the TTM product in terms of the matrix
acting on the fibers. In other words, the TTM multiplies each mode-£ fiber of X by
A. In figure 1.6b we see the notion that a TTM multiplies each column fiber of X by

10

the rows of A, and in figure 1.6b we see the notion that this is equivalent to unfolding

the input and output tensors and performing a regular matrix multiplication.

S FZZ A S FZZ A
—_—

y c [RIXnXp A c Raxm

X € Rmxnxp

(a) Tensor form: the first row of A and first mode-1 fiber of X' are emphasized with arrows.

Y () € R A € RI*m

X(l) e Rm*np

(b) Matrix form.

Figure 1.6: Mode-1 TTM (along column fibers)

Mathematically, the Tensor Times Matrix (TTM) operation has the same struc-
ture os matrix multiplication. Mode-1 TTMs, in particular, align closely with the
intuitive understanding presented in figure 1.6. However, practical implementations
become more complex for higher modes, as the tensor’s memory layout significantly
influences the computation. The technical details involved in these practical consid-
erations are beyond the scope of this work. For a more in-depth treatment of TTM
implementation, see [1].

Because of this omission, figure 1.7 showcases the mathematical way of represent-

ing a T'TM on mode 2, which is not how it is performed computationally. Similarly to

11

mode-1 TTM, we visualize it in its tensor format in figure 1.7a as applying the xmatrix
A to the row fibers of X. If we wish to visualize this TTM as matrix multiplication,

there is no transpose, and figure 1.7b has the same format as figure 1.6b.

=il

— AT 6 RTLXT‘

y e RmXT‘Xp X 6 RanXp

(a) Tensor form: the first row of A and first mode-2 fiber of X are emphasized with arrows.

Y(2) € Rrxmp

X(z) c R*xmp

A c R’/‘Xn

(b) Matrix Form

Figure 1.7: Mode-2 TTM (along row fibers)

It is in the matrix-multiplication format that one can understand best the nature
of the details of how TTM operations are performed computationally. The best mode
to understand the complications that arise in practical TTM operations is the last

mode of a tensor. For the 3-way case, that can be seen in figure 1.8. Notice that the

12

matrix multiplication format of this TTM in figure 1.8b has been adapted to have
the transpose of all elements involved. This is to avoid any data memory movement
which is deemed expensive. Again, more details of this can be found on [1]. For the
3-way case, the cost of a TTM of a cubical tensor of size n and a matrix of size n by
n is O(n*). For the general case, A € R™™ and a tensor X € R™M> XmXXna_ the

computational complexity is O(r - H?Zl Nd)-

Tensor-Times-Tensor (TTT) products

The last type of Tensor multiplication required for this work is the Tensor-Times-
Tensor (TTT) multiplication, which is also known as Tensor Contraction. Before
proceeding to this next case—which is considerably more challenging to visualize
using the illustrative methods employed thus far—it is worthwhile to briefly revisit
the types of multiplication discussed up to this point.

Notice how from the first type of multiplication covered, we required the inner
dimensions to match. For vector-vector products, there were two types of multipli-
cation as there are two ways we can match the dimensions. An array a € R™ can be
multiplied by an array b of the same length either through (a,b) (inner product) or
aob (outer product). In other words, we could either perform a 1 by n times n by 1
inner product or an n by 1 times a 1 by n outer product. The former contracts the

inner dimension of size n to produce a 1 by 1 scalar, and the latter contracts the inner

13

y e RanX’I‘ X e RanXp

(a) Tensor form: the first row of A and first mode-3 fiber of X are emphasized with arrows.

Y’T

mnxs T
) € R X

) c Rmnxp

AT € RP*®

(b) Matrix Form

Figure 1.8: Mode-3 TTM (along tube fibers)

14

dimension of size 1 to produce an n by n matrix. The same idea of contracting the
matching inner dimensions can be seen in matrix-vector products where we match the
second dimension of matrix A € R™*" to the first dimension of vector x € R", where
they are then contracted to produce a vector of size m. In matrix-multiplication we
match the inner dimenions of two matrices, contract those two matching dimensions,
and the size of the output matrix is the outer dimensions of the two matrices. In a
mode-k TTM we match the columns of matrix to the mode-k fibers of a tensor X,
then the &' mode is contracted. The idea of the generalized tensor contraction is the
same; we contract some subset of the matching modes of two tensors.

Consider two tensors, X € R™*™*P and Y € RP*9*", The last mode of X matches
the size of the first mode of), so we can contract along those modes. The result is

a tensor Z € R™*"*4*" defined by

p
Z (11,92, J1, J2) = X (i1, 9, k)-V(k, j1, J2), V(i1,i2, 41, J2) € [m]®@[n]®[q]@[p] (1.6)
k=1

As mentioned earlier, the nature of the drawings presented so far are not useful
for visualizing this form of multiplication. Tensor contractions can get complicated
not only because of this change in visualization, but also in the notation for d-way
tensor contractions. Since the details go beyond the scope of this work, they will be
omitted. For this work, it suffices to know that as long as one or more modes of two

tensors match, a contraction is possible along those modes.

15

Other Types of Matrix-Matrix Products

We now go over a few other matrix products that come up in the context of tensor

decompositions.

Matrix Hadamard Products

Given two same-sized matrices A, B € R"™*" their Hadamard product, also known

as element-wise product, is

C = A *B e R™" where ¢;; = a;;bi5, V(i,7) € [m] x [n], or

ainbin o abiy aix - Qip b1 -+ bip
= : : : :) (1.7)
amlbml e amnbmn Am1 *°° Qmn bml e bmn
Matrix Kronecker Products
Given two matrices, A € R™*™ and B € RP*?, their Kronecker product is
C=A & B e Rmpan’ where Cry = ailjlbm?, (18)

where the relationship between (k, ¢), (i1, j1), (i2, j2) is as follows, given zero-indexed

input indices (i1, ji, 72, j2) € [m] ® [n] ® [p] ® [q],

k = piy + iy and £ = qj; + Jo. (1.9)

Elementwise, the Kronecker product can be visualized as

16

apiby - anblq """ Aipbiy - a1nblq
a1lbp1 anbpq Chnbpl Glnbpq
@11 - Ain bir -+ bin
Am1 Qmn bml bmn
amlbll e amlblq """ amnbll e amnblq
Am1bpt = Apibpg v Ay *** Qg

One could also express the Kronecker product in the block format as:

CLHB e CLlnB
A®B=

amB - an,B

Matrix Khatri-Rao Products

Given matrices A € R™*? and B € R™*? the Khatri-Rao product computes the
columnwise Kronecker product with the columns of its inputs. We define the Khatri-

Rao product as

C =A©B e R" where ¢ = aybje, (1.10)

17

and the relationship between the zero-indexed indices k € [mn] and (4, j) € [m] ® [n]

is k = ni+j. In terms of the columns of A, B, we have that ¢, = a, ® by, V¢ € [p], or

| |
C = a1®b1 ap®bp

1.2 Tensor Decompositions

Tensors suffer from the infamous curse of dimensionality. This curse exists be-
cause as the number of the dimensions of a tensor grows, its storage cost and the
cost of operations involving it grows exponentially. This is because the number of
entries in a cubical d-way tensor is n?. Thus, there is often a need to compress these
large datasets. Tensor decompositions are techniques that decompose tensors into
smaller structured representations. Similar to most types of matrix decompositions,
we seek a set of matrices/tensors that can be multiplied together appropriately to
reconstruct the input. Matrix or tensor decompositions can be either exact or ap-
proximate. Most tensor decompositions can be viewed as higher-order generalizations
of matrix decompositions. There are several types of tensor decompositions, but in
this work we focus on the following two; the CP Decomposition and the Tucker De-
composition. Chapter 2 focuses on exact CP decompositions of a special type of
tensor. Chapter 3 focuses on tensor approximations using the Tucker Decomposition.

We now briefly introduce these tensor decompositions.

18

1.2.1 Kruskal Tensors and the CP Decomposition

The Canonical Polyadic (CP) Decomposition compresses an input tensor into a Krus-
kal Tensor (KTensor), which is a sum of r rank-1 components. Each component is an
outer product of r vectors. We refer to r as the rank of the CP decomposition, though
this is technically true only when r is minimal. We can visualize this in the case of a
3-way tensor as shown in figure 1.9a. The vectors in each mode are concatenated as
columns to form a factor matrix as seen in figure 1.9b. It is crucial to note that the

order of the components is arbitrary.

Zl/ z,/
1 1
y1 Y-

X1 Xr

(b) The vectors of the components of the Kruskal tensor come together to form factor

matrices

Figure 1.9: The CP Decomposition

Mathematically, given a tensor 7 € R™*™*P and decomposition rank r € N, the

19

goal of an approximate CP Decomposition is to find factor matrices X € R™*" Y €

R"*" Z € RP*" such that

Lijr ~ Zﬂiz‘zyﬂzke; V(i, j, k) € [m] x [n] x [p], (1.11)
(=1

or alternatively

T~[X,Y,Z] =) zoyo0z. (1.12)
/=1

The memory footprint of a KTensor is 3rn. The approximation gets more accurate
as r increases. This is the 2D matrix equivalent of having an n X n matrix approxi-
mation to be the sum of the outer product of two n x 1 vectors. Traditional methods
of computing the CP decomposition of a tensor through numerical oprimization are
gradient descent and Newton’s method. The method used in this work is a variation
of the latter called damped Gauss-Newton (DGN), which is explained in section 2.1.3.
The goal of a CP Decomposition is to minimize the sum of squares errors with the

restraint of the user specified rank r as defined as

min || 7 — [X,Y, Z]|?, subject to X € R™"Y € R""Z € RP*". (1.13)

where T — [X,Y, Z] is defined element wise as follows

m n D

r 2
|7 —[X,Y,Z]|* = Z (tijk - wayﬂzkz) : (1.14)
=1

i=1 j=1 k=1

20

1.2.2 Tucker Tensors and The Tucker Decomposition

The Tucker Decomposition compresses an input tensor into a Tucker Tensor (TTen-
sor), which is a smaller core tensor with a factor matrix for each of its modes. To
reconstruct the approximation of the original tensor, each factor matrix is multiplied
with the core in its respective mode through a TTM. We can visualize this in the case

of a 3-way tensor as shown in figure 1.10.

Lo/

Figure 1.10: A 3-way Tucker Tensor Diagram

If we consider a 3D tensor of size n® with core of size r® where » < n, then the
number of entries of a TTensor is 3rn+r3 which is less than the original memory foot-
print and much less if r << n. The reconstruction of the original tensor is performed

using TTMs:

T%[[Q;A,B,C]]:gxlAXQBXz),C (115)

and a single entry of the reconstruction can be expressed as

21

i =S50S Gasy - tiabyscir, V(i k) € ml @ W] @[] (L16)

a=1 =1 v=1

The traditional methods for computing a Tucker decomposition re Higher Order
Singular Value Decomposition (HOSVD) and Sequentially Truncated Higher Order
Singular Value Decomposition (STHOSVD). Though Higher Order Orthogonal Itera-
tion (HOOI) is not as traditional, it will be the focus of chapter 3. We describe these

algorithms in section 3.1.

22

Search For Fast Matrix Multiplication Algorithms

Section 1.1.4 introduced the original matrix multiplication algorithm of O(n?) cost,
yet alternative algorithms exist that achieve the same result with reduced computa-
tional complexity. A substantial amount of research has been dedicated to the de-
velopment of fast matrix multiplication algorithms, motivated by the fact that even
the most advanced known algorithms remain far from the theoretical lower bound of
O(n*logn). Indeed, the fastest existing algorithms—operating in the range of O(n*3)
to O(n*%)—are not practical for most applications. As a result, research in this area
remains active, with continued efforts to discover more practically efficient algorithms.
Although the methods explored in this thesis do not set new benchmarks, they offer

meaningful contributions toward that goal.

To properly contextualize the role of CP Decomposition in this work, it is first
necessary to review the foundational concepts behind fast matrix multiplication al-
gorithms. Section 2.1.1 begins by laying the groundwork with a introduction to fast
matrix multiplication algorithms. Section 2.1.2 summarizes how previous work ex-

23

plored the application of CP Decompositions to a specific tensor in the search for
efficient matrix multiplication algorithms. Our contributions begin in section 2.2
where we explore a structure of fast matrix multiplication algorithms called cyclic
invariance. We explain such structure in section 2.2.1 and we adapt the ideas of sec-
tion 2.1.2 to solely explore algorithms that have the cyclic invariance in section 2.2.2.
We summarize our findings in section 2.2.3.

Finally, in section 2.3, we outline the future direction of this research. This sec-
tion is the result of a collaborative effort with the Department of Mathematics at
Wake Forest University. With the partnership of Dr. Frank Moore and Dr. Pratyush
Mishra, we investigate additional symmetries that fast matrix multiplication algo-
rithms might exhibit and examine whether any of the algorithms identified in this

work possess such characteristics.

2.1 Matrix Multiplication Algorithms

2.1.1 Fast Matrix Multiplication Algorithms

Recall from section 1.1.4 the way matrix multiplications are performed. In particular,
(1.5) demonstrates how to multiply two matrices A, B € R?**?. If we interpret the
values of A and B not as scalars but as submatrices, it becomes apparent that, we
can perform such matrix multiplication using a recursive algorithm like the one on

algorithm 1, which is given more compactly in figure 2.1.

24

Algorithm 1 Recursive Matrix Multiplication

function C = MATMUL(A, B)
if dim(A) = dim(A) = 1 then

end function

return A - B
end if
A, A
Divide into quadrants: A = [AH A12] B=
M, = MatMul(A;q, Byy) Ao
M2 = MatMul(Au, le)
M3 = MatMul(An, B12)
M4 = MatMul(A12, Bzz)
M5 = MatMul(A21, B21)
Mﬁ = MatMUI(A22, B12)
M7 = MatMU.l(Azl, B12)
Mg = MatMul(A22, B22)
M, +M, M3+ M,
return C =

Ms +Mg M7 + Mg

M, = Ay, By
M, = Ai;p-By
M; = Ay -Byp
M, = Ay -Bo
Ms = Ay -Bp
Mg = Ay By
M; = Ay -Bp
Mg = Ay - By
Chn = M +M,
Cp = M;+M,y
Co = M;+ Mg
Cop = My + Mg

Figure 2.1: Classic 2 by 2 Matrix Multiplication Algorithm

This algorithm involves 8 multiplications and 4 additions of matrices of size /2.

Therefore, the computational complexity is T'(n) =

O(n?).

25

8T (7/2) + O(n?) = O(n'e28) =

This computational cost can be decreased by carefully manipulating our

M, = (A +Ag)- (B + By)
M, = (Ap+Axp) By

M; = Ay - (By —By)

M, = Ay - (Biz—Bun)

M; = (A + Ag) - By

Mg = (A —Aq)- (B +Bay)
M; = (A — Ayp): (B + By)
Cu = M;+My;—M;5+ My
Cp = M;+ M;

Coy = My + My

Cop = M; — M, + M3+ Mg

Figure 2.2: Classic Strassen’s Algorithm

multiplications and additions in order to reduce the number of recursive calls. In
1969, Volker Strassen became the first to develop an algorithm with cost less than
O(n?®), which made way for fast matrix multiplication algorithms. His classic
algorithm, showcased in figure 2.2, involves 7 multiplications. The computational
complexity of Strassen’s algorithm is 7'(n) = 7T (7/2) + O(n?) = O(n'*827) &~ O(n?®').

Strassen’s algorithm can be rearranged; we can modify the additions and multi-
plies to get a permuted version of his algorithm with the same number of multiplies
and additions. An example of these variations of Strassen’s algorithms can be seen
in 2.3. Notice how the two algorithms are the same, except that M3 became Mg, M,
became M3, Mg became M7, and M; became My and the additions in C changed
respectively. There are multiple ways one could permute Strassen’s classic algorithm

to obtain other valid fast matrix multiplication algorithms. Furthermore, there are

26

M, = (A +Ag)- (B + By)
M, = (Ap+Axp) By

M; = Ay - (Biz—Bun)

M, = (A —Ay): (B + By)
M; = (A1 + Ag) - By

Mg = A (Ba — Ba)

M; = (A —Apn): (B +By)
Cnu = M;+M;3+My—M;
Cp = My,+M;

Co = M;+ Mg

Cop = M; — M, + Mg+ My

Figure 2.3: Permuted Strassen’s Algorithm

other types of transformations that can be applied to Strassen’s original algorithm to
obtain even more alternative algorithms (see section 2.3). One example is the algo-
rithm presented in figure 2.4, which can no longer be achieved by simply permuting
Strassen’s classic algorithm. Both algorithms presented in figures 2.3 and 2.4 will be
relevant in section 2.2 as they contain a special structure that is hard to visualize in
the classic algorithm of figure 2.2. The specific representations of the algorithms of
figures 2.3 and 2.4 were chosen because the above structure is easily visualizable in
these representations and they contain slighly different variations of the aforemen-

tioned structure.

This naturally leads to the question: how many such possibilities exist? We could
search for different solutions that all have the same number of multiplications by

performing either an exhaustive search or an optimization search on each parameter

27

M, (A2 + Ag) - (Biz + By)

M3 (Agz — Agy) - (B — Bay)

M, (Ag1 — Ay — Ap) - (Bay — B — Byy)
M; (—Ai2) - (—Ba1)

Mg (A1 — Ao+ Agi — Agy) - (—Bq2)

M; = (—Ag) (B — Bz + By — By)

Figure 2.4: Variant Strassen’s Algorithm

involved in matrix multiplication as seen in figure 2.5. If we are searching for a discrete
solution with only -1, 0, 1 as coefficients then we have 3% possibilities, though not
all of these possibilities would be valid algotithms. We will see how we can decrease
this number later on to something much more feasible using the structure hinted
at in these algorithms. Before exploring non-exhaustive search strategies for these

algorithms, we introduce the central focus of this project.

2.1.2 The Matrix Multiplication Tensor

Central to this work is a specific tensor; the Matrix Multiplication Tensor. It enables
matrix multiplication to be represented in tensor form as illustrated in figure 2.6. To
carry out the multiplication of matrices A € R™*"™ and B € R"*?, we can form the

respective matrix multiplication tensor M € R™"*""*™P through Algorithm 2.

28

(1)
uyy Aqg + uu A12 + l121)A21 + qu)Agg)
A+ 1L12>A12 + 1121)A21 + ug)AQQ)

A+ uu>A12 + uﬂ)
)
(6)
)

&
|

A11 + uu>A12 + ugl

CJ\Z
|

A,

Ay + LL ©) A22)
Ao + uéQ Ay) -
uu A+ uu>A12 + ugl Ao + ug)Agg)

S
AAAA/—\/—\/—\
C

——

M; + w< >M2 + u§1 M; + wgl

Q
o
V)

|

g

—o=

M3 + U)gl

1)
1)

,() ,(2) 3

021 Wo1 M1+% M2—|—u21
)

(U11>B11 + Uu Bis + 1’21)B21 + Vs
(UH>B11 + Uu By + L21)B21 + zgj
(UH>B11 + Uu By + L21)B21 + 122 By
o1+ sy Aga) - (v} Buy + Uu By + 05y Bay + 0
(UH>B11 + Uu B + Uﬂ)Bm + L(i
(l B11 + Uu B + Uﬂ)Bm + vl
(l BH + vu By + Uﬂ)Bgl + 1,’22 B,y
M, + wﬁ)Mr + wu Mg + 11’§1

)))
M, + wfz)MQ + u%Z)Mg + ng)M4 + wg)Mr + wu Mg + 11’§2)M7

)))

)))

a

My

M4 + U)gl)Mr + w21 MG + ’Ujgl M7

Cy = u'gz M, + w M2 + uéQ M; + wgz M, + wgg)M5 + w22 Mg + wéz M-

Figure 2.5: Exhaustive Search of Fast MatMul Algorithms

Algorithm 2 Forming the Matrix Multiplication Tensor

function 7 = MATMUL-TENSOR(m,n, p)
T = zeros(mn,np, mp)
fort=1:mdo

fori=1:mdo
fori:=1:mdo
T(mj+i,nk+j,pi+k)=
end for
end for
end for
end function

> Initialize Tensor

29

Figure 2.6: Matrix Multiplication in Tensor Format, where a = vec(A), b = vec(B),

and ¢ = vec(CT).

In order to perform matrix multiplication through the matrix multiplication ten-
sor, we vectorize A and B and perform TTMs in the first and second mode respec-
tively. The output, in the third mode, is the vectorization of the output C = A - B

transposed (i.e. CT). Notation wise this is the same as

aj; by C11
b
M xqvec(A) xyvee(B) = M x4 2 xy | 2] =) _ vec(CT). (2.1)
agy b Ci2
agg [sP%) C22

where a;; = vecA,;;. This project is concerned only with square matrices, thus we

2

always assume A, B, C € R™" and M € R xn*xn*,

We now revisit the concept of tensor decompositions, specifically the CP decom-
position. Recall from 1.2.1 that the decomposition compresses an input tensor into r
d-way outer product components. If we decompose the matrix multiplication tensor
using the CP Decomposition, there is a hidden fast matrix multiplication algorithm
embedded in the components of its CP decomposition. In fact, the number of com-

ponents r corresponds to the number of multiplications in the algorithm. As a result,

30

two implications arise. The first implication is that given an algorithm, say one of the
3% for 2 x 2 algorithms with rank 7, we can form the KTensor of the corresponding
algorithm, namely M and take the norm of the difference from the original matrix
multiplication tensor. If |M — M|| = 0, then the algorithm in the factor matrices of
M is a valid fast matrix multiplication algorithm. Before continuing with the second
implication, we must understand how to visualize the hidden algorithm in the factor
matrices of a KTensor.

Figure 2.7 shows Strassen’s original algorithm with two representations, the one
we have seen before on the left and the KTensor representation in figure 2.7b. The
way to interpret the algorithm on the right, is that each horizontal lines separate the
factor matrices, therefore just like in figure 1.9a the factor matrices A, B and C are
separated by the horizontal lines, the columns of the factor matrices represent the
rank-one components. A careful examination reveals how the columns representing
M, correspond to the representation on the right. If a 1 or -1 appear in the right
representation then they appear as A;; or —A;; respectively on the left.

The other implication is that we can decompose the matrix multiplication tensor
with specified CP rank (as in (1.13)) through an optimization algorithm to search for

fast matrix multiplication algorithms.

31

M; M, My My, Ms; Mg My
A1 0 1 0 1 -1 0
M; = (A1 +Ayp)- - (Bi1+By) Aol 0 1 0 0 0 1 O
M, = (Ap+Ay) B Ay 0O 0O O O 1 0 1
M; = Ay (Bs — By) A/ 1 1 0 1 0 0 -1
M, = Ay (Bix—By)) By 1 1 0 -1 0 1 0
M; = (Ai1+Ay) By B0 O O 1 0 0 1
Mg = (Ap— A1) (B +Ba) B0 0 1 0 0 1 0
M; = (Ag —Ag) - (Bia+ By) Byp| 1 0 -1 0 1 0 1
Cy = M +M,;—-M;+ My Ch/1 0 O 1 -1 0 1
Ciy = M3+ M; Cy/0O O 1 0 1 0 O
Cy = My+ My Cpel0 1 0 1 0 0 O
Coo = M; —M;+ M3+ Mg Cepl 1l -1 1 0 0 1 0

(a) Recursive Algorithm Format (b) KTensor Format

Figure 2.7: A comparison of classic Strassen’s algorithm in regular and KTensor

formats. The horizontal lines indicate the factor matrices of the KTensor

2.1.3 Damped Gauss Newton Optimization for CP Decompositions

To search for fast matrix multiplication algorithms, we employ numerical optimization
techniques to solve the CP decomposition problem formulated in (1.13). This subsec-
tion is dedicated to outlining and deriving the steps and tools required to construct
an algorithm tailored specifically to this problem. As a starting point, we define the

input to the optimization as the vectorization of the KTensor, given by:

X vec(X)
vV = vec Y = | vec(Y) | € R*™.
Z vec(Z)

32

Using v as the input to our unconstrained optimization problem seen in (1.14), we

obain the following representation of the same equation
min f(v) = Zlo(v)|? - B = R, (2:2)
where we define the nonlinear function
d(v) = vec (M — [X, Y, Z]) : R> — R"™. (2.3)

It is important to emphasize that [X,Y,Z] denotes the 3-way tensor constructed
from the factor matrices of the K'Tensor, which is obtained from v. Since our objective
is to find exact solutions, it is advantageous to use an algorithm that converges rapidly
in the neighborhood of a solution to the optimization problem of (2.2). The classic
Newton algorithm is a natural choice due to its quadratic convergence. The search

direction in Newton’s method is computed by solving Newton’s equation
V2 f(v)d, = =V f(v),

where V2f(v) is the Hessian, V f(v) is the gradient, and d;, is our search direction

defined as
vec(X)

= | vec(Y) | € R*.
vec(Z)

d; = vec

NI =14

The use of Newton’s method requires evaluating the Hessian matrix, V2f(v),

which can be computationally expensive and difficult to derive—especially given the

33

cyclic invariant structure discussed in section 2.2. As an alternative, the Gauss-
Newton method offers a practical approximation of the Hessian with JTJ, where
J : R" — R™™ is the Jacobian of the function ¢(v). The Gauss-Newton equation is
defined as

(TN, = —Vf(v)

However, a limitation of the Gauss-Newton method is that the approximation
J7J is often singular. The damped Gauss-Newton (DGN) method adds a damping

parameter, A, to enforce positive definiteness. Thus, the DGN equation is defined as

(JTT + A\D)d, = —Vf(v). (2.4)

The goal of the remainder of this section is to show the equations necessary to
implement the DGN for the CP decomposition (CP_DGN) method. We omit the
details of the derivation of such equations as it goes beyond the scope of this work.
The interested reader is referred to [1]. We begin with the right-hand side of the DGN

equation. The gradient is

af/BX af/@vec(X)
Vf =vec of Jox = | f/ovec(y) | € R3r
8f/ﬁ’Z 8f/avec(Z)

where each subequation is defined as

34

ofox = ~Mu(ZOY)+X(Z'Z+YTY) € R™*7
of loy ~M9)(Z ®X) + Y (Z'Z x XTX) € RV (2.5)
ooz, = M) (Y ©X)+Z(YTY * XTX) € RV

On the other hand, we have the Jacobian, which is defined as
J=|Ja Jg Jo | eR™ (2.6)

where

Jx = 9/oveex) = (ZOY) @1 € RV*nr
Jy = 0/ovec(y) = I} (Z © X) @ T € R¥ > (2.7)
JZ = 8975/6vec(Z) = Hg(Y ® X) (29 I € Rn3><nr

such that ITj is the tensor perfect shuffie matrix ([1], Definition 2.24), such that vec(P)
= I, vec(P (1)), and I, is not written explicitly because it is the identity matrix. We
consider fast application of JTJ + AI, rather than forming J or J7J explicitly; we use
the structure of these matrices to compute the matrix-vector product (J7J + AI)d,
without computing any explicit Kronecker or Khatri-Rao products. From (2.6) we

have that the block structure of J7J is

I Ix JiIy J3Jz
JUI=| J{Ix JyIy J{Jz
J2Ix JJIy JLJz
By distributing the left-hand side of the DGN equation, we obtain J7Jd; + AIdy.

While the second term is trivial to derive, the first term becomes

35

J1 Ixvec(X) + I3 Jyvec(Y) + Ji Jzvec(Z)
J1Id;, = | JLIxvee(X) + JLIyvec(Y) + JLIzvec(Z) | . (2.8)
JTIxvec(X) + J5Jyvec(Y) + I, Jzvec(Z)

With some careful algebra ([1], Proposition 13.1), it can be shown (2.8) leads to

vec(X(YTY * Z7Z) + X(YTY * Z7Z) + X(YTY % Z7Z))
JIdp = | vee(Y(XTX+ZTZ) +Y(XTX*ZTZ) + Y(XTX*ZTZ)) |. (2.9)
vec(Z(XTX * YTY) + Z(XTX * YTY) + Z(X™X * YTY))

We now have all of the necssary tools to create the algorithm that searches for
fast matrix multiplication algorithms through the CP decomposition of the matrix
multiplication tensor. This algorithm is showcased in detail in algorithm 3. A couple
important observations must be made. First, note that we do not solve the DGN
equation equation (2.4) directly. Rather in line 11 we use a conjugate gradient iter-
ative algorithm to solve the DGN equation, which is the reason it is sufficient to be
able to apply (JTJ 4+ AI) to dj instead of computing the approximate Hessian of ¢(v)
explicitly. Secondly, we update d; using backtracking line search using the Goldstein

Conditions, for details see ([1], B.3.1).

2.2 Cyclic Invariance

We can reduce our search space in our search for fast matrix multiplication algo-

rithms by levereging cyclic invariance. Cyclic invariance is an added structure in

36

Algorithm 3 Damped Gauss-Newton On The Matrix Multiplication Tensor

1 Input: Matrix Multiplication Tensor M,

2 CP Tensor Rank r,

3 Damping Parameter A € RT,

4 Convergence Tolerance ¢ > 0

5 OQutput: CP Tensor K

6 function DGN(M,r, A, €)

7 Initialize K and K,y to be a cell of length 3 of n? x r matrices

8 for 1 = 1: MaxIters do

9 f+— 3 |M—K|? > Compute Function Value
10 Vi «— [vec (%) vec (%) vec (%)]T > Compute Gradient
11 S +— Solution to (JTJ 4+ MI)K = —Vf > Conjugate Gradient Iter. Alg.
12 while Goldstein Conditions Are Not Satisfied do

13 K — Kpev + S

14 fpew <— 3|M = K|?

15 a<— af2

16 end while

17 if f-1{,., < e then

18 break

19 end if

20 end for
21 end function

matrix multiplication algorithms that reduces the number of variables of the CP De-
composition optimization problem for the matrix multiplication tensor by a factor of

three.

2.2.1 Cyeclic Invariant Matrix Multiplication Algorithms

Recall that we can permute Strassen’s agorithms to obtain variations. Some of these
variations can be cyclic invariant. Recall from section 2.1.1 that we introduced a vari-
ation of Strassen’s algorithm in figure 2.3. Figure 2.8 shows both Strassen’s original
algorithm on the left, and the permuted version in KTensor format in figure 2.8b. No-

tice how: (1) the permutation is given by simply moving the columns of the KTensor

37

(in unity) just the way it was described previously. M3 became Mg and so on, and (2)
the permuted Strassen’s algorithm on the right is composed of smaller submatrices
that appear throughout the main factor matrices of the KTensor (highlighted in col-
ors). The 4 x 1 matrix in red is called the symmetric component, and we place it
at the beginning of all three factor matrices. We denote it as S. The remaining three

4 x 2 submatrices are called the cyclic component, we denote them as U, V, W.

M, M, M; M, M; Mg M, M, M, M; M, M; Mg M,
Ayl 0 1 0 1 -1 0 Ayl1l 0 0 0 1
Apl0 1 0 0 0 1 0 Ap| 0 1 0 0 0
Ax| O 0 0 0 1 0 1 Ayl O 0 0 1 1
Apl1 1 0 1 0 0 -1 Ap| 1 1 1 —1 0
Bu/l1 1 0 -1 0 1 0 B, | | 0 0 1
B,/ 0 0 0 1 0 0 1 Bio| 0 1 0 0 0
By| 0O 0O 1 0 0 1 0 By | 0 0 0 1 1
Byl 1 0 -1 0 1 0 1 By | 1 1 1 -1 0
Chu/1 0 0 1 -1 0 1 Cul 1 1 0 0
Cuyl0 O 1 0 1 0 0 Cou| 0 0 0 1 0
Cn/0 1 0 1 0 0 0 Cpl 0 1 1 0 0
Co|l1 -1 1 0 0 1 0 Co| 1 -1 0 11

(a) Classic Strassen’s Algoritm from fig- (b) Permuted Strassen’s Algoritm from fig-
ure 2.2 ure 2.3

in KTensor format in KTensor format

Figure 2.8: Cyclic Invariance in Strassen’s Algorithm

Because they are always submatrices of the factor matrices, both the symmetric

and the cyclic components have the same number of rows as the factor matrices,

38

namely n. However, they can have a different number of columns. We denote the
number of columns of the symmetric component as r, and the number of columns of
the cyclic component as r.. Since r is the rank of the CP Decomposition, we have
that ry + 3r. = r. Because of this, given a matrix multiplication tensor of n x n
matrices, and a given rank r, there are multiple choices for r., which in turn define

the value of r, since ry = r — 3r,.

M, M, M; M, M; Mg M; M, M, M; M, M; Mg M;
Apl1l 0 0 0 1 1 —1 Ayl 0 0 0 0 1 0
Apl0 1 0 0 0 0 1 Apl0 0 -1 1 0 1 —1
Ayl O 0 0 1 1 0 0 Ayl 0O 1 0 -1 -1 =1 0
Apl1 1 1 -1 0 0 0 Ap| 0 1 -1 0 -1 0
By/l1 | —1 0 0 0 1 By/1 0 0 0 0 0 1
B/ 0 0 1 1 0 0 0 Bp| 0 0 —1 10 1
Byuy|O 0O 0 0 0 1 1 Ba| 0O 1 0 -1 0 —1 —1
Byl 1 0 0 1 1 -1 0 Byl 0 1 1 -1 0 0 -1
Cul1l 0 1 1 —1 0 0 Cull1 0 0 0 1 0 0
Cul0 0 0 0 1 1 0 Cyu|l0 0 -1 1 1 —1 0
Cpl0 1 1 0 0 0 0 Cpl0 1 0 -1 -1 0 -1
Cpl 1l -1 0 0 0 1 1 Cu|l0 1 1 -1 -1 0 0

(a) Permuted Strassen’s Algoritm figure 2.3 (b) Variant Strassen’s Algoritm figure 2.4

in KTensor format in KTensor format

Figure 2.9: Different types of Cyclic Invariance in Strassen’s Algorithm

For rank 7 algorithms of 2 x 2 matrices, we have two options [rs = 1,7, = 2| and
[rs = 4,7, = 1]. We have seen versions of both of these selected values before in

section 2.1.1. The algorithm found in figure 2.3 is a cyclic invariant algorithm with

39

rs = 1,7, = 2, and similarly the one in figure 2.4 has r, = 4,r. = 1. Figure 2.9
shows these algorithms in their KTensor format where their cyclic invariant structure

is easily visualizable.
We can visualize imposing the cyclic invariant structure on the factor matrices of

the KTensor as transforming figure 1.9b into figure 2.10, and transforming figure 1.9a

into figure 2.11.

X n2
Y n2
Z n2

T's Te Te Te

r=rs+ 3r.

Figure 2.10: Cyclic Invariance in a KTensor

E—— E— S—] [—
51 + + Sr + Wi + + W
Sl S'r U1 UTC
/ " / v
e e
U,
+ O + + ‘
Vi \
/ 5 / o
E—— E——
\E
+ Vi + o+ ‘
Wi W,

Figure 2.11: CP Decomposition Diagram with Cyclic Invariant Structure

2.2.2 Adapting CP_DGN to Cyclic Invariance

The goal of this section is to adapt algorithm 3 to search for algorithms with cyclic in-
variant structure. The process of solving the DGN equation (J7J + AI)d, = =V f(v)
stays the same, but now we adapt v. To exploit the cyclic invariance structure on a
KTensor with matrices X,Y, and Z we impose that these are built of smaller sub-

matrices S, U, V, and W as in

(2.10)

N
1l
w wm »
< g c
g <
< =

Therefore, instead of searching for matrices X,Y, and Z, we are solely searching
for matrices S, U, V, and W which are known to be the building blocks of X, Y, Z.
Essentially, we decreased the number of variables of our optimization problem by a
factor of three. If we were to do an exhaustive search like in figure 2.5, we decrease

from 3% possibilities to 3% for the 2 by 2 case with 7 multiplications. Our input v is

now defined as

S

U)
vV = vec
\% vec(V)
\%%

Similarly, the search direction d; becomes

d; = vec

gl < i W
3
jei

The function value f(v) to this problem remains the same, we are solely adapting

(1.14) to be

T —1S,S,S] - [U,V,W] — [W,U, V] - [V,W,UJ|J?, (2.11)

which is equivalent to

n n n Ts Te 2
g g E Mijk — E SigSjqSkq — E (wivjiwg + Wy v + vgwiug) | . (2.12)
q

i=1 j=1 k=1 !

By decreasing the number of variables, we have increase the complexity of the

42

equations for the gradient and Jacobian. The equations for the gradient become

V=

where each partial derivative is defined as:

offas = 3 (S(STS*STS)+U(VTS*WTS)+V(UTS*WTS)+W(UTS*VTS)
~(X(1)+X (2)+X(3))(S0S))

ffou = 3 (S(STV*STW)—i-U(VTV*WTW)+V(WTV*UTW)+W(UTV*VTW))
—X(1)(VOW) =X () (WOV)~X (3, (VOW)

Offov = 3.(S(STUXSTW)+U(WTUSVTW)+V(UTUxWTW)+ W (VTUUTW))
—X (1) (WOU)~X (2)(UOW)— X 3)(WOU)

ffow = 3 (S(STU*STV)+U(VTU*WTV)+V(WTU*UTV)+W(UTU*VTV))

—X(1)(TOV)-X(2)(VOU)-X (5 (UOV)

Similarly, our Jacobian becomes

J:[JS Ju Jv Jw | € R

where

Js SEOS)I+I]- (SOS)RI+II]- (SOS)®I

Ju = (VOW)QI+III- (WoV)RI+II} - (VoW)eI
Jv = (WoU)@I+I}- (UoW)I+II}- (WeU) eI
Jv (UoV)I+IIl- (VoU)I+II- (UoV)el

(2.13)

(2.14)

(2.15)

(2.16)

However, recall that we are not interested in the explicit expressions for the Ja-

cobian, but rather how to apply (J7J + AI)d, to our search direction dj. Just as in

section 2.1.2, we ignore the expression for A\Idy as it is trivial.

43

J;JS J;JU JgJV J;JW VGC(S)

Jad, — | 0s Wl Judv Tidw vee(D0) (217)
s IJy IIv ILIw vec(V)
J{;VJS J{N'JU J{;VJV J{;VJW VeC()

The equations for each entry of the above matrix-vector product are described

below:

JiJsvec(S) = 3vec(S(STS)(STS)+2-5(ST)«(STS))
JiJuvec(U) = 3vec(T(VIS)«(WTS)+V(TTS)x(WTS)+ W(TTS)%(VTS))
JLIvvec(V) = 3vec(V(UTS)«(WTS)+U(VTS)«(WTS)+ W(VTS)«(UTS))
JLIwvec(W) = 8vec(W(UTS)«(VTS)+U(WTS)x(VTS)+V(WTS)x(UTS))
Jidsvec(S) = 3wvec(S(STV)«(STW)+S ((STW)+(STV)+(STV)+(STW)))
JLJuvec(U) 3-vec(T(VIV)«(WTW)+V(TTW)« (WTV)+W(I_JTV)*(VTW))
JLIyvec(V) = 3~vec< V(WTV)«(UTW)+ W (VTW)x(UTV)+ U(VTV)*(WTW))
JLIwvec(W) = 3-vec(W (UTV)«(VTW)+U(WTW)%(VTV)+ V(V_VTV)*(UTW))
JyJsvec(S) = 3-vec(S(STU) (STW)+S((gTU)*(STW)+(§TW)*(STU)))
I Iuvec(U) = 3vec(D(VIW)«(WTU)+V(TTU)(WTW)+W (TTW)=(VTU))
JLIvvec(V) = 3wvec(V(WTW)«(UTU)+W (VTU)(UTW)+U(VTW)«(WTU))
JLIwvec(W) = 3~vec(W(UTW)#(VTU)+U(WTU)x (VTW)+V(WTW)*(UTU))
JiyJsvec(S) = 3vec< S(STU)x(STV +S((§TU)*(STV)+(§TV)*(STU)))
JJuvec(U) = 3vec(TVIU=(WTIV)4V(TTV)«(WTU)+W(TTU)(VTV))
JiJvvec(V) = 3~Vec((WTW)*(UTV)+W(VTV)*(UTU)+U(VTU)*(WTV))
JIwvec(W) = 8vee(W(UTU)(VIV)+UWTV)(VTU)+V(WTU)=(UTV)).

With all of these modifications, we introduce a modified version of the CP_DGN
algorithm that searches for fast matrix multiplication algorithms with cyclic invariant

structure. Details can be found in algorithm 4.

44

Algorithm 4 Cyclic Invariant CP Damped Gauss-Newton

1 Input: Matrix Multiplication Tensor M,
CP Tensor Rank r,
Damping Parameter A € R,
Convergence Tolerance ¢ > 0
Output: CP Tensor
function DGN (M, 7, A, €)
Initialize K and K_prev to be a cell of length 4 with the first entry being of

N

~N o OB~ W

n? x ry and the remaining three n? x r, matrices
8 for i =1: MaxIters do

9 f+— M —K|? > Solution to equation (2.12)
10 VE «— [vec (g—é) Vecﬁg—é) vec (88—";) vec (;—Jv)]T

11 S <— Solution to (J*J + A\[)K = —Vf

12 while Goldstein Conditions Are Not Satisfied do
13 K +— K_prev + a§

14 f ew ¢— Compute Function Value

15 a<— af2

16 end while

17 if f-f,., <ethen

18 break

19 end if

20 end for
21 end function

2.2.3 Heuristics and Our Findings

This section describes the heuristics of the process of searching for fast matrix multipli-
cation algorithms as well as a summary of the identified algorithms using algorithm 4
for selected values of n, r, ry, and r,.

Given n and r we search for all possible combinations of r, and r.. For each
combination, we perform a CP decompositon using algorithm 4 with thousands of
random starts to initialize initial KTensor in line 7. We perform our experiments on

a server so that we can take advantage of multiple processors on these random starts.

45

After we obtain an approximation of the matrix multiplication tensor (i.e. after a full
passing of algorithm 4), we run through CI_.CP_DGN again, but instead of a random
start, we use the output of the previous passing as a starting point. However, in
between iterations, we modify the solution of the previous output. First, we sparsify
our solution by applying a transformation that maintains the approximation but
introduces some zeroes into a single component (see section 2.3). This transformation
tends to also introduce more zeroes in other components. Secondly, we also force the
coefficients to be between -1 and 1 before initializing further rounds of CI_.CP_DGN.
We save any solution, at any point, that results in an exact decomposition of the
matrix multiplication tensor. With our testing scheme being defined, we discuss our
findings.

For n = 2, it is well-established that no solutions exist for » < 7. Nonetheless,
for r = 7 it is noteworthy that several solutions were found for r, = 1 and r, = 4,
although many of these are equivalent up to permutations. For the case of n = 3, the
best-known algorithm corresponds to r = 23, while the theoretical lower bound stands
at r = 19. We explored values r = 22,21, 20, and 19, but our algorithm did not yield
any novel results at these ranks. At r = 23, all three r, values identified corresponded
to previously known solutions. We were also unable to find new algorithms for r, =

8,14,17, and 20.

Our first novel results emerge in the case of n = 4 algorithms. While the values

46

2

| n=27r=4| S [[n=3r=23] 8 || n=4r=49 | S| n=5 |3]

re=1r.=2|1000s || re=2,7r.=7 | 100s || rs=1,r.=16 | 6 || r=109 | 2
re=4,r.=11]1000s || rs=5,r.=6 | 100s || rs=4,r.=15 | 0 r=93 |0
rs =8,17.=D5H - re="71r.,=14 | - r=91 |0
re=11,r. =4 | 100s || v, = 10,r. =13 | - -
re=14,r. =3 - re =13, r. =12 | 2
re=17,1. =2 - re =16,r. =11 | 32
re = 20,7, =1 - -

Table 2.1: A Summary of our found Algorithms discovered using CI_.CP_DGN. S
corresponds to the number of solutions found given using the specified symmetric
and cyclic ranks. An approximation is given for n = 2 and n = 3 as too many
algorithms were found and there is not a record of exactly how many were found.

Details are omitted from n = 5 as an extensive search is yet to be performed.

rs = 1 and ry = 16 correspond to known solutions—being equivalent to applying
Strassen’s algorithm twice—our method successfully identified a previously unkown
fast matrix multiplication algorithm with r¢ = 13. Unfortunately, despite the exis-
tence of algorithms with 7y = 4, our approach did not yield any such results, which is
likely due to limitations in the search process which could mean further explorations
could reveal an algorithm in this case. No algorithms were found for r, = 7, 10, or
any r, > 19. Our exploration for n = 5 was limited, and a more rigorous search

remains to be conducted.

47

2.3 Further Structure in Matrix Multiplication Algorithms

Throughout this work, we have explored the cyclic invariance structure in fast matrix
multiplication algorithms and how it reduces the number of variables in CP decom-
position of the matrix multiplication tensor [2, 3, 4]. There are two other types of
symmetries not explored in this work, namely the the GL? and the transpose sym-
metries.

We can express the cyclic transformation as a map on a CP decomposition of the

matrix multiplication tensor:

[X,Y,Z] — [Z,X,Y]. (2.18)

The output of a cyclic transformation is always also a valid matrix multiplication
algorithm; if the transformation produces the same components, just in a different
order, then we say that the algorithm is cyclic invariant. Similarly, we define the

transpose transformation as the following action on a CP decomposition

IX,Y,Z] = [Mpun Y, n X, L Z], (2.19)

where IL, ., is the (matrix) perfect shuffle permuation matrix that satisfies
IT, . ,vec(M) = vec(MT) [5]. As before, this transformation also results in another
valid matrix multiplication algorithm. This property exists because AB = C implies

ATBT = CT. Lastly, the GL? action is defined as an action that tranforms a CP

48

decomposition

XY, Z] - [(Q T P)X,(RTT®Q)Y,(P T®R)Z], (2.20)

where P, Q, and R are any n xn nonsingular matrices. The reason this also results in
another valid algorithm is because AB = C implies (PAQ)(Q'BR) = PCR. The
special case where Q = P = R is called the diagonal action, which maintains the
cyclic invariance structure of an algorithm if it exists. If the output of a transpose
action or the GL? action is the same as the input, possibly with the components

reordered, then we say the algorithm is invariant to that action.

We refer to the set of transformations that can map a given tensor decomposition
to itself (up to permutations of the components of the decomposition) as the symmetry
group of the algorithm. Currently, we are studying the algorithms for n = 4 r = 49
case that we have found. Our goal is to identify the symmetry groups of these
algorithms, to find any additional invariance ((2.19) or (2.20)) in these algorithms.
Prior work has done this manually, but we are attempting to automate this process.
Future work is to introduce the corresponding structures while searching for these
algorithms. For example, imposing the cyclic invariant structure in the search for
fast matrix multiplication algorithms reduced the number of variables by a factor of
three. Similarly, imposing the transpose structure reduces the number of variables by

a factor of 2. Imposing both simultaneously reduces it by a factor of 6.

49

Parallel Rank-Adaptive HOOI

Previous work has shown that the Tucker decomposition is particularly effective at
compressing datasets arising from scientific simulations occurring in two or three
spatial dimensions and through time, in part because algorithms for computing the
Tucker decomposition can scale to high performance computing platforms (see, e.g.,
6,7,8,9, 10, 11, 12]). When used as a technique for compression, the Tucker format
has an advantage that subtensors can be efficiently decompressed without reconstruct-
ing the full tensor, which allows for fast visualization of particular time steps, spatial
regions, or quantities of interest. The Tucker decomposition is a generalization of the
truncated singular value decomposition (SVD) that consists of a core tensor, with as
many modes as the input, and a set of factor matrices. The dimensions of the core
tensor are known as the Tucker ranks, and like the truncated SVD, smaller ranks yield
higher compression but larger error, in contrast, larger ranks yield lower compression
but smaller error. This is known as the compression-accuracy trade-off as seen in

Figure 3.1.

50

Compression

Figure 3.1: The Tensor Decomposition Trade-Off

To specify compression beforehand, we constrain the size of the core tensor G. In
the 3-way case, we specify the array of ranks r = [¢, 7, s, or in the d-way case, r =
[71,...,74]. Because we set the ranks beforehand, this is called the rank-specified
formulation, and with it, we also know the compression ratio beforehand which for

the 3-way case is

mnp _mnp
qrs+qm-+nr+sp qrs

(3.1)

In this formulation, we cannot determine in advance what the accuracy will be. On
the other hand, to specify accuracy beforehand, we constrain the maximum relative
error threshold e of the Tucker approximation. The 3-way case of the relative error

can is defined as

. 3.2
B se (3.2)

This is called the error-specified formulation, where we cannot determine in advance

what the compression will be.

As we describe in section 3.1, a direct algorithm known as Sequentially Trun-
cated Higher Order SVD (ST-HOSVD) achieves quasi-optimal accuracy among de-

compositions of specified ranks, and it can adaptively determine ranks to solve the

ol

error-specified formulation [13, 14]. The Higher Order Orthogonal Iteration (HOOI)
algorithm is an iterative method that solves the rank-specified formulation of the
problem [15, 16, 17]. Conventional wisdom has held that because ST-HOSVD solves
the rank-specified problem to within a small factor of the optimal solution, HOOI is
useful only to refine ST-HOSVD’s solution and is typically unnecessary [18, 9, 19].
Based on the observations that (1) a single iteration of HOOI is computationally
cheaper than ST-HOSVD, particularly when the compression ratio is high, and (2)
when initialized randomly, HOOI tends to converge to a solution as accurate as that
of ST-HOSVD in as few as one or two iterations, the goal of this work is to evaluate
the scalability of HOOI to large tensor datasets and compare its performance with
state-of-the-art implementations of ST-HOSVD.

One of the main limitations of HOOI is that it solves the rank-specified formula-
tion of the Tucker approximation problem, but it does not solve the error-specified
formulation. In section 3.1.5, we propose a rank-adaptive variant of HOOI that does
solve the error-specified formulation. Our approach is based on incrementally expand-
ing the Tucker ranks over HOOI iterations in order to satisfy the error threshold and
then, once it is satisfied, truncating the ranks to maximize compression. We exploit
fast computation of the approximation error of a given Tucker approximation and all
its leading subtensors to determine the best truncation. Thus, prior knowledge of the

output ranks is no longer required, but the choice of initial ranks affects the number

52

of HOOI iterations performed.

TuckerMPT is a C++/MPI library that implements ST-HOSVD for large dense
tensors [9]. We build our parallelization of HOOI on TuckerMPI, leveraging the exist-
ing functionality for the main computational kernels required of both ST-HOSVD and
HOOI, including the TTM computation and algorithms for computing the SVD. The
efficiency and scalability of HOOI is largely determined by those of the TTM and SVD
kernels. We apply two key optimizations, one for each kernel, in order to make our
rank-adaptive parallel HOOI algorithm more efficient. To reduce the computational
costs of the TTM kernel, we use memoization to avoid recomputation of individual
TTMs that occur across subiterations of HOOI; see section 3.1.3. To reduce costs
and expose better parallelism of SVD computations, we use subspace iteration within
HOOI subiterations. While subspace iteration computes only an approximation to
the leading left singular vectors, we show that one subspace iteration is sufficient to
obtain the desired accuracy across the full HOOI iteration. Implementation of sub-
space iteration requires new parallel computational kernels in TuckerMPI, which we

describe in section 3.1.4.

In section 3.3, we evaluate the efficiency and scalability of HOOI and compare it
to TuckerMPI’s ST-HOSVD. We consider synthetic test data to show how the number
of modes and the compression ratios affect performance, and we demonstrate the im-

pact of our computational optimizations in different scenarios for the rank-specified

53

approximation problem. We also consider three real datasets generated from sci-
entific simulation of fluid flow and combustion to test the rank-adaptivity of our
algorithm. The experimental results demonstrate that HOOI generally scales as well
as ST-HOSVD. In cases of large tensor dimension, ST-HOSVD becomes bottlenecked
by a sequential SVD-related computation, and HOOI scales significantly better than
ST-HOSVD at high core counts. We show that HOOI benefits from the reduction of
computational cost, roughly proportional to the compression ratio in a single tensor
dimension, compared to ST-HOSVD, but that it can suffer from lower local kernel
efficiency as a result. For scenarios of high compression ratio and initial ranks that are
overestimates of the output ranks, we observe that HOOI achieves Tucker approxi-
mations faster than ST-HOSVD, and in many cases, produces Tucker decompositions

with better compression ratio.

3.1 Tucker Algorithms

Recall from Section 1.2.2 that a Tucker decomposition of a tensor X € R™*xnd
approximates X as a product of a core tensor G € R™ " and factor matrices Uy €
R™*"YE € [d] where X ~ X = G x; Uy - x Uy, The optimal rank-r Tucker
decomposition of X can be expressed as a solution to the rank-specified optimization

problem

o4

min HX—(Q XlUl"'XUd)H
(3.3)
subject to G € R™* > Uy € R™*" Vk € [d].

Alternatively, the error-specified formulation of the Tucker approximation problem

is given as

d d
min Hrj—i-g n;r;
Jj=1 Jj=1

subject to G € R U, € R™ "™V € [d]

and [|X — (G x, Uy -+ x Up)|| < e]| X].

3.1.1 ST-HOSVD

We start with the state-of-the art algorithm that is capable of performing both rank-
specified and error-specified formulations. Algorithm 5 showcases the d-way construc-
tion of the ST-HOSVD algorithm. This method approximately solves either (3.3) or
(3.4) by unfolding the k' mode of the input tensor, computing its left leading singu-
lar vectors (LLSV), and then performing a TTM with the result to truncate the k"
mode of rank r,. Once all factor matrices have been computed, the truncated tensor

has rank r.

A relative error error of € can be achieved by selecting ry, in the LLSV computation

such that Y7 07 < €| X[]*/d, where o; is the i*" largest singular value of the &

95

unfolding, see [1] for more details. There are several algorithms one could choose
in line 8 to compute Uy. We assume that such computation is performed via the

eigenvalue decomposition (EVD) of the Gram matrix G(k)ng) as seen in algorithm 6.

Algorithm 5 ST-HOSVD

1 Input: Tensor X € R™ > x"d

2 Ranks r = rq,...,ry OR relative error tolerance ¢ > 0

3 Output: TTensor T of ranks r with 7 =~ & OR ERR = ||X — T|| < ¢/|X]|

4 function ST-HOSVD(X, r or ¢)

5 if € is defined then € « (¢/V/d) - ||X]|

g+ X

for k=1,...,d do
Uk, €] <= LLSV (G), 1, or €) > 1y, leading left sing. vectors of residual
G+ Gx U] > compress in mode k

10 end for

© 0 N O

11 ERR Z € > equivalent to ||X — T|

12 return [G, U4, ERR] > T =1{G;Urq}
13 end function

Algorithm 6 LLSV

1 function U = LLSV(Y,r or ¢)
2 S=Y-YT

3 U, A] = eig(S)

4 return U(:, 1:7)

5 end function

3.1.2 Classic HOOI

The details of the HOOI algorithm are given in algorithm 7. HOOI is an alternative
method for solving the rank-specified formulation of the Tucker approximation prob-

lem [15, 16, 17]. It is a block coordinate descent method and so it requires initial

56

factor matrices. Historically, the output factor matrices of ST-HOSVD have been
used as input factor matrices for the HOOI algorithm, which is used simply to refine
the approximation. However, random factor matrices can be used and generally no
more than two iterations are required to get a good approximation. Often, only one
iteration is enough to get a decent one.

HOOI iteratively updates each factor matrix by performing a TTM with all but
the k' factor matrix to obtain an intermediate tensor). The k'factor matrix is
computed as the LLSV of Y ;). The core tensor G can be computed once, at the end,
or at the end of every iteration in order to computate a per-iteration approximation
error. We introduce three optimizations for the HOOI algorithm in an attempt to

make it more competitive against ST-HOSVD.

Algorithm 7 HOOI

Input: Tensor X' € R™ ¥ >4
Either Ranks r = ry,...,14
Maximum Number of Iterations
Output: TTensor T of ranks r with 7 ~ X
function HOOI(X, r or €)
Initialize factor matrices Uy.4 randomly
g+ X
for Maximum Number of Iterations do
for k=1,...,d do
y=Xx X1 U.{ Xog o Xp_1 U;—l Xk+1 UZ—{-I Xk42 " Xq U;;

end for
end for
G+ Y xqU] > update core
return [G, U4 >T ={G;Urq}

end function

57

3.1.3 HOOTI’s Dimension Trees Optimization

Adapting ranks in each HOOI iteration is a low order cost, however, the cost of
TTMs is a factor of d more expensive than in ST-HOSVD. We can reduce the cost
of TTMs by avoiding redundant computations. Notice that for £ = 1 in algorithm 7
the following multi-TTM is computed Y = X x5 Ul x3 Ul--- x, UL. At k = 2 the
multi-TTM is Y = X x; U] x3 Ul --- x4 U]. By comparing the two multi-TTMs we
can see that d — 2 TTMs are the same (namely 3 to d). So we can reuse results from
one multi-TTM to the next by memoizing intermediate results. This idea, organized
using so-called “dimension trees”, was first used in the context of CP decompositions
[20] and has been applied to Tucker computations as well [21, 22]. Section 3.1.3 shows
an example dimension tree as we implement them for an order-6 tensor where each
node represents the set of modes in which a TTM has not been performed. At the
root of the tree, no TTMs have been performed, so the tensor is X'. Each notch in
an edge of the tree represents a TTM in the labeled mode. At each leaf node, TTMs
in all modes but one have been performed, so we update the factor matrix in that
mode by performing LLSV. The core tensor G is updated at the last leaf node by
perform a TTM between the (memoized) intermediate tensor and the factor matrix
corresponding to the last leaf node. Algorithm 8 shows the HOOI iteration using

dimension tree memoization implemented recursively.

58

{1,2,3,4,5,6}

/\

{4,5,6}

P

{2,3} {5,6}
2} {3} {5} {6}

Figure 3.2: Illustration of multi-TTM memoization for an order-6 tensor. Each node
in the tree shows the set of modes in which multiplication has not been performed.
Each notch in an edge is a TTM in the labeled mode. Factor matrices are computed

at each leaf node in the mode shown. G is updated in the last leaf node.

Algorithm 8 Recursive HOOI iteration via dimension trees
1 function [G,{U;}] =HOOI-DT(X,{U;}, m,r)

2 if length(m) = 1 then

3 U,, = LLSV(X(m), U,,, rm)

4 if m = d then

5 g=X x4 UL%

6 end if

7 else

8 Partition m = [y, 1]

9 X =X X, U

10 G, {Ux}] = HOSI-DT(X,{Ux},n, 1)
11 X =xX kenUT

12 G, {Ux}] = HOSI-DT(X,{U.}, u, 1)
13 end if

14 end function

59

3.1.4 HOOTI’s Subspace Iteration Optimization

So far, we have assumed that the LLSVs of a matrix A are obtained as the eigenvectors
of the Gram matrix, AAT. The next algorithmic improvement we introduce is to
compute the leading left singular vectors by using subspace iteration. Algorithm 9
shows a single subspace iteration, but the computations could be repeated to improve

accuracy.

Algorithm 9 LLSV via Subspace Iteration
1 function Q = LLSV(A,U,r)
2 G=UTA
3 Z =AGT
4 [Q~,~]=QRCP(Z)

5 end function

We note that the input matrix A is Yy from algorithm 7 or X(,,) from algo-
rithm 8, which is the result of an all-but-one multi-TTM, and the input matrix U is
the factor matrix from the previous HOOI iteration. This implies that the tempo-
rary matrix G in algorithm 9 is an unfolding of the core tensor corresponding to the
current set of factor matrices. That is, the matrix multiplication in line 2 is a TTM,
which we implement using existing TuckerMPI subroutines. The multiplication in line
3 is a tensor contraction in all modes but one between the core tensor and the result
of an all-but-one multi-TTM, which is not implemented in TuckerMPI. Our parallel
algorithm mimics the computation of the Gram matrix of a tensor unfolding, but it is

a nonsymmetric operation and has different costs. Finally, we perform QR with col-

60

Q
BN
Q

Figure 3.3: Adaptive HOOI

umn pivoting in line 4 to orthonormalize the subspace iteration result and also order
the columns to aid in core analysis, which is discussed in section 3.1.5. We choose
to do only a single subspace iteration because we use an accurate initialization (from
the previous HOOI iteration) and because high accuracy of a HOOI subiteration is

less of a priority than high accuracy of the full HOOI iteration.

3.1.5 HOOTI’s Adaptive Rank Optimization

A significant disadvantage of HOOI is that it solves only the rank-specified formula-
tion of the Tucker approximation problem, whereas ST-HOSVD can adaptively select
ranks based on a relative error tolerance. We propose a technique that allows HOOI
to automatically adapt ranks to meet a user-specified relative error tolerance.

Recall that for the error-specified formulation, given an error tolerance ¢ and an
initial rank estimate r, our method adaptively finds a Tucker decomposition X =
[G;Uy,..., Uy for a tensor X € R™*"*"a guch that ||X — X|| <]| X]. We start

with a typical HOOI iteration using our initial rank estimate r, partially compressing

61

our tensor in all modes except mode k and updating factor matrix U to be the first
ry left singular vectors of the partially compressed tensor. Once all modes have been
processed in this manner, we check the error of the approximation at that point.
Whereas in classical HOOI the core is only updated after the iterations, here we
compute the core tensor at the end of every iteration and perform error analysis on
it. To check the error, we use the identity that for orthonormal matrices Uy, ..., Uy
and G = X x; UT x - -- x4 U7, the approximation error can be written as | X — X||? =
|[X — G x1 Uy x -+ xg Ugl|2 = || X||*> = |IG|I* ([1, Proposition 6.3]). If the current
Tucker approximation is not sufficiently accurate, we increase all ranks by a factor
a and perform the next HOOI iteration. If the current approximation satisfies the
error threshold, then we can optimize over all rank truncations by analyzing the core
tensor’s entries. We can thus estimate the relative error in the approximation by
computing ||G||, and choosing the next rank r so that ||G(1 : r)||* = (1 — &%)||X]>.
Specifically, we solve the optimization problem

d d
leln H?“j—i-g n;rj,
Jj=1 j=1

(3.5)

subject to |G(1 : r)|* > (1 —&?)|| X2

This computes the leading subtensor of G that minimizes the size of the Tucker
approximation and also satisfies the error threshold. Note that any subtensor of

the core, along with the corresponding columns of the factor matrices, is a valid

62

Tucker approximation with error determined by the norm of the core subtensor. The
optimal subtensor need not be a leading one, but we order factor matrix columns
to concentrate the weight of G towards the entry of smallest index value so that the

heuristic of searching over only leading subtensors is reasonable.

If such a rank r exists, we set our next rank as the solution to (3.5) and truncate
to that rank before iterating. If no r exists, our current rank is too small, so we
increase it by a some factor a before the next iteration. Typically, a &~ 2 is sufficient.
The details of this algorithm, are described in algorithm 10. In practice, we do the
optimization problem above in a way that minimizes the memory footprint. We
compute the cumulative sum of the squared core and then consider all values of this

cumulative sum squared tensor to solve the optimization problem (3.5).

Algorithm 10 Adaptive HOOI
function PERFORMCOREANALYSIS(G, €, 1)
if [|G] > (1)| X then
Find r = arg min ||G(1 : r)|[?
subject to ||G(1: r)||> > (1 — €)]|X][?

Truncate G, A, B, C' according to r
else
r=ar
Increase columns of A, B, C' according to r
end if
return r
end function

63

3.2 The TuckerMPI Library

TuckerMPI uses P processors organized into a d-dimensional P; X --- x Py grid such
that P = Hle P; and that each processor stores a 1/ P fraction of X. Our analysis will

assume X € R™*™ and G € R™*"*" to simplify cost comparison across algorithms.

3.2.1 TuckerMPI’s ST-HOSVD
ST-HOSVD’s Computational Complexity

The cost of LLSV in line 8 is given by

d+1

d . .
ri—lpd—i+2 3 n 5
> (Tﬂom)) ~ =+ O(dn?),

where the first term is the cost of computing the n x n Gram matrix and the second
term is the cost of sequentially computing the EVDs to leading order. After Uy is

computed,) is truncated by performing the TTM in line 9, which costs

Pipd—i+1 d

—_— N 2—.
, P P
j=1
Computing the Gram matrix is a factor of 7/2» more expensive than the TTM and is
the dominant cost for n > r. Sequentially truncating) leads to decreasing dimen-

sions, so the algorithm is typically dominated by the first Gram matrix computation.

Note that the EVD is not parallelized, which can be a barrier to parallel scaling when

64

a single tensor dimension is large. We summarize the leading order ST-HOSVD flops

cost in table 3.1 (shown in red).

ST-HOSVD’s Communication Complexity

TuckerMPI’s parallel algorithm for LLSV explicitly forms the Gram matrix, G =
Y(k)Y(Tk), where Yy is redistributed (if necessary) to a 1D column layout across P
processors, and then sequentially computes the EVD of G. After redistribution of
G, each processor computes a local Gram matrix which can be sum-reduced (or all-
reduced) prior to the EVD. At iteration k, the number of entries in Y is /= 1nd=i+1,
The Gram matrix that is computed in each mode is of size n X n, so the total com-

munication cost is dn? for the all-reduce. Thus, the communication cost is given

by

d L
; (T] 17;5 j+1 . PjP; 1 +(’)(n2)> - n?j ' P1P: 1 - O(dn?),
where we assume the redistribution cost is dominated by the first mode. However,
note that there is no redistribution cost in mode j if P; = 1. Finally, the parallel TTM
also requires communication to perform a sum-reduce of local TTM results. Since the

output of the TTM is largest in the first mode (of size rn=!/P), the communication

cost of TTMs to leading order cost is

d rind—i d—1

j=1

65

Again, note there is no communication cost in mode j if P; = 1. Because the largest
data communicated occurs in mode 1, processor grids with P, = 1 are typically
the fastest for ST-HOSVD (as we observe in our experiments). We summarize the

ST-HOSVD communication costs in table 3.2 (shown in red).

3.2.2 TuckerMPI’s HOOI

HOOTI’s Computational Complexity

Since HOOI is an iterative algorithm for Tucker decomposition, we analyze the cost
of one HOOI iteration. Each HOOI iteration requires d multi-TTMs, in all modes but
mode-7, and d LLSV computations to update factors matrices, in all modes. Once
the factor matrices have been updated, the core tensor G is obtained by performing a
TTM with the last factor matrix U,. The cost of computing d multi-TTMs is given

by

i=1
The cost of each TTM decreases, so the first term in the summation (i.e. the first
TTM) dominates. Multiplying the cost of the first TTM by d yields the cost of d

multi-TTMs (i.e. one HOOI iteration). The cost of computing LLSV is given by

+ O(dn?),

66

where the first term is the cost of computing the Gram matrix Y(k)Y(Tk) and the second
term is the cost of computing the EVD. Finally, the core tensor at the end of each
HOOI iteration is obtained by performing a TTM in mode-d with the intermediate
tensor) and Uy, which has a cost of 2-77%/p and is a lower order term. We summarize
the leading order cost per HOOI iteration as implemented by TuckerMPI in table 3.1

(shown in red).

HOOTI’s Communication Complexity

The communication cost of each iteration of HOOI is dominated by multi-TTMs
and LLSV computations. Each TTM in the multi-TTM requires communication to
perform a sum reduction to form). Communication is required along the processor
dimension corresponding to the mode in which a TTM is performed. The size of Y
decreases with each TTM, so the communication cost of a multi-TTM is dominated
by the first TTM. Each HOOI iteration performs d multi-TTMs, where one iteration
updates the factor matrix in the first mode. The cost of communication for the

multi-TTMs is given by

J=L i d—it2) i—1,,d—14+1
r'n r n
S (E -t Y e w-)
j=1 =1 i=j+1
rnd—1 rnd-1

67

The first term corresponds to the d — 1 TTMs performed in the 1st mode and the
second term corresponds to TTMs performed in the 2nd mode (for the multi-TTM

in all but the 1st mode).

Communication is also required when computing the LLSV in each mode. Using
the same LLSV algorithm as in ST-HOSVD, the Gram matrix is computed in parallel
followed by a sequential EVD. Computing the Gram matrix requires an all-to-all to
redistribute Yy so that it is stored in 1D-column layout. After redistribution Y, Y]
is computed in parallel by performing local matrix-matrix multiplications that are
sum-reduced to obtain the Gram matrix. The cost of communication for the LLSV

is given by
-1

r¢ln P—1 9
. Z(p)+dn,

=1

where the first term is the cost of all-to-all communication and the second term is
the cost of sum reduction of the Gram matrix for one HOOI iteration (i.e. d calls to
LLSV). We summarize the HOOI communication costs as implemented by TuckerMPI

in Table 3.2 (shown in red).

68

3.2.3 TuckerMPI’s Dimension Tree

Dimension Tree Computational Complexity

The flops cost of performing multi-TTMs using dimension-trees is given by

d/2 T,indferl . rnd
1y ———+0|d Z ipd=it R Ao
i=1 i=d/2+1

where the first term is the cost of computing the TTMs in the first two branches
(left and right of the root) in the dimension tree and the second term is the cost of
computing the TTMs in all remaining branches. The largest TTMs in the first two
branches dominate, so the cost of multi-TTMs is 4 - ™“/p (i.e. the first TTM in each
branch), which is a factor of 4/2 improvement over computing multi-TTMs directly.

This cost is summarized in Table 3.1.

Dimension Tree Communication Complexity

Since the first TTM in each of the two multi-TTMs off the root dominate, the com-

munication cost of multi-TTMs is given by

d/2 . o _
Tznd i—1 T’Tld 1

Iz (=14 P —1) = Iz

(P + P;—2).

When traversing the right branch in the dimension tree shown in section 3.1.3,
TTMs are performed in the first /2 modes starting with mode 1. The communication

cost associated with TTMs in the right branch is the cost of a reduce-scatter on local

69

data of size *"'/p - (P, — 1), which yields the first term. The second term is due to
the communication cost associated with traversing the left branch in section 3.1.3.
TTMs in the left branch are performed in the last 4/2 modes starting with mode d.
We perform left branch TTMs in reverse order because the mode d TTM achieves
higher local TTM performance due to the layout of the local tensor in memory.
The communication cost associated with TTMs in the left branch is the same as
the first term, except that the reduce-scatter is performed in the P, processor grid
dimension. Therefore, processor grids with P, = P; = 1 are typically the fastest for
HOOI algorithms employing the dimension tree optimization (as we observe in our
experiments).

As shown in tables 3.1 and 3.2, introducing dimension-trees memoization reduces
the flops cost of TTMs in HOOI by a factor of d/2 and the communication cost by a

factor of d — 1 in the first term.

3.2.4 TuckerMPI’s Subspace Iterations

Subspace Iteration Computational Complexity

Each subspace iteration requires two matrix-matrix multiplications and one QR de-
composition. The first matrix-multiplication corresponds to the TTM G = Y X, ng)
(in the notation of algorithm 7) and the second computes the tensor contraction

Y(k)ng). The total computational cost of performing the TTM and contraction in

70

each HOOI iteration is 4d - »/p. The cost of the QR decomposition of the matrix
Z € R™" in each HOOI iteration is O(dnr?), where we assume a sequential QR de-
composition. The total cost of performing subspace iteration in each mode across an

entire HOOI iteration is given by

d
4d% + O(dnr?).

As shown in table 3.1, the cost of LLSV using subspace iteration is a factor of
1/4 - n/r cheaper than the cost of LLSV via the Gram matrix. When comparing the

sequential EVD to the sequential QR decomposition, the cost of the latter is a factor

of O <("/r)2> faster.

Subspace Iteration Communication Complexity

Subspace iteration requires communication in the TTM, tensor contraction, and QR
decomposition in each mode. The communication cost of the TTM is given by ™/p -
(Py—1), where P, corresponds to the number of processors in the k" mode. The tensor
contraction requires redistribution of both tensors via all-to-all communication steps.
However, the all-to-all cost is a lower order term since it is a factor of P, cheaper than
the communication cost associated with the TTM. Once the contraction is performed,
a sum reduction followed by a broadcast is required to ensure that all processors can
independently compute local QR decompositions. The communication cost of the QR

decomposition is given by 2nr since Z € R™*" and must be communicated twice. As

71

shown in table 3.2, the total communication cost of the LLSV calls within an iteration

of HOOI using subspace iteration is given by

(P; — 1) + 2dnr.

1

RN 1IN

d
‘7:

3.2.5 TuckerMPI’s Adaptive Rank

Core Analysis Computational Complexity

The cost of one RA-HOOI iteration is the same as one iteration of HOOI given in
table 3.1, but with the possible additional cost of performing analysis on the core
tensor G to adapt the ranks for the next iteration. We solve the optimization prob-
lem given in (3.5) exhaustively by computing the norm and corresponding size of
every leading subtensor. This can be done using only O(dr?) operations by employ-
ing a multidimensional prefix sum computation across the squares of the core entries.
Because computational cost tends to be dominated by the rest of the HOOI itera-
tion, we perform the core analysis sequentially, though the prefix sums are readily
parallelizable.

Assuming that this analysis is performed sequentially, the cost of the core analysis
is O(r?). The cost of the core analysis is dominated by the cost of computing a cumu-
lative sum of entries in G and finding the smallest entry which meets the relative error

tolerance. Performing these operations requires O(r?) flops. Since we need 7/r to be

72

Algorithm LLSV | TTM | Core Analysis

. . Gram + Eig d% + O(dn?) Direct 2(1% J
HOOL iteration Sub. Iter. 4d"—1§d + O(dnr?) | Dim. Tree 4% O(dr)
ST-HOSVD 2+ O(dn?) PE -
RA-HOSI-DT £ (442 + O(dnr?)) ¢ (az) ¢ (0(dr))

Table 3.1: Leading order flops costs of LLSV (Gram + Eig and Subspace Iteration),
multi-TTM (Direct and dimension-trees) and Core Analysis algorithmic choices for
HOOI and a comparison between ST-HOSVD and HOOI with Subspace Iteration
and dimension-trees (HOSI-DT) optimizations. We assume ¢ iterations of HOSI-DT

are performed

large for HOOI to improve performance over ST-HOSVD, the cost of sequential core
analysis can be performed in parallel, but we expect that the cost of communication

would outweigh the benefits of parallelizing this operation.

Core Analysis Communication Complexity

At the end of a HOOI iteration, G is distributed across all processors, so it must be
gathered on a single processor in order to perform analysis. Since the entire core tensor
must be communicated, the all-gather cost is ¢ per HOOI iteration. We demonstrate

in section 3.3 that the sequential cost of core analysis is typically negligible.

3.3 Results

This section presents a comparison of the running time (strong scaling and running

time breakdown) and compression (error vs. time and error vs. compression ratio)

73

Algorithm LLSV | TTM | Core Analysis

Gram + Eig | Y0 Blodn’ | Direct | (d—1)25 (P — 1)+ (P, — 1)

5
Sub. Tter. |5 Y0 (P —1)+2dnr | Dim. Tree. | (P, — 1)+ ™ (P~ 1)
ST-HOSVD TUELES s me (P - 1)

P P

RA-HOSL-DT t(% Y (P-1)+ 2dn7'> t(’"j;‘ (P + P - 2)) ((1)

T/ S

HOOI iteration

Table 3.2: Leading order bandwidth costs of LLSV (Gram + Eig and Subspace Itera-
tion), multi-TTM (Direct and dimension-trees) and Core Analysis algorithmic choices
for HOOI. For reference, we include a comparison between ST-HOSVD and HOOI
with Subspace Iteration and dimension-trees (HOSI-DT). We assume a processor grid

of P= (P, x --- x P;) and that ¢ iterations of HOSI-DT are performed.

performance of the various Tucker algorithms presented in this work. All algorithms

were implemented using the TuckerMPI (C++4-/OpenMPI) library [9].

Computing platform. Our experiments were conducted on NERSC Perlmutter
(CPU partition). The system consists of 3072 compute nodes with dual-socket AMD
EPYC 7763 64-core CPUs. Each socket has 4 Non-Uniform Memory Access (NUMA)
regions for a total of 8 NUMA regions per node. Each NUMA region has 64 GB of
DRAM memory, therefore each CPU socket has 256 GB of DRAM for, a total of 512

GB of memory per node.

Experiments. We perform experiments on synthetic tensors that are randomly
generated and tensors obtained from real applications. We use 3-way and 4-way
tensors for the synthetic experiments, and three real datasets: Miranda [23] (3-way),

HCCI [24] (4-way), and SP [25] (5-way). The real datasets are described in more

74

detail in section 3.3.2. Experiments performed on synthetic tensors are performed in
single precision, while experiments on real datasets are performed in single or double
precision depending on their storage precision on disk. Strong scaling experiments
are performed on the synthetic tensors. We show running time breakdown of both
real and synthetic experiments. For synthetic tensors we show the running time
breakdown at small and large scale to highlight how each step in a given algorithm
scales. For real tensors we vary the error tolerance and starting ranks to show how
performance breakdowns vary. Compression performance experiments are performed
only on the real datasets.

Even for a fixed number of processors P, the d-way processor grid has a significant
effect on all algorithms. As described in section 3.2.1, STHOSVD benefits from pro-
cessor grids with P, = 1, and HOOI variants using dimension trees are theoretically
more efficient when P, = P; = 1. In addition, for modes with small tensor dimension,
a large processor dimension in that mode may cause load imbalance due to uneven
division. In all experiments, we test all algorithms on a variety of grids, including
those we expect to benefit individual algorithms, and we report the fastest observed

running times.

75

3.3.1 Strong Scaling on Synthetic Tensors

First, we present strong scaling experiments on the 3-way and 4-way synthetic ten-
sors to demonstrate the parallel scaling of HOOI, HOOI-DT, HOSI, HOSI-DT, and
STHOSVD. We choose tensor dimensions to maximize the size of the tensor that can
fit on a single node (in single precision).

For synthetic input, we generate tensors by forming a Tucker-format tensor of
specified rank and adding a specified level of noise. Thus, these experiments are
performed for the rank-specified formulation of the Tucker approximation problem to
recover the input. We run for two iterations for each variant of HOOI even though we
often have a sufficiently accurate approximation after a single iteration. We include
overhead due to core analysis for the error-specified formulation in the experiments
on the real datasets. The largest 3-way tensor that fits into single-node memory is a
tensor of size 3750 x 3750 x 3750. We generate this tensor to have a rank of 30 in all
modes. Similarly, we construct the 4-way tensor of size 560 x 560 x 560 x 560 with
Tucker ranks (10, 10, 10, 10).

Figures 3.4 and 3.5 shows the strong scaling results of the HOOI variants and
STHOSVD on up to 4096 cores for the 3-way and 4-way synthetic datasets. We
observe that STHOSVD scales well to 64 cores, attaining a speedup of 15.2x over
the single core STHOSVD run. STHOSVD continues to scale up to 2048 cores,
but achieves only a modest speedup of 1.3x over the 64 core run. This is due to

76

= HOOI
21 1 |-~ HOOI-DT
2101 . HOSI
1 |—— HOSL-DT
| STHOSVD

Time
[\
(@23
|

| | | | | | |
RN S R R
REIE NI

by\
Number of Cores

Figure 3.4: Strong scaling comparison of Tucker algorithms in single precision using

a 3-way 3750 x 3750 x 3750 input tensor

TuckerMPI’s limitation of having a sequential EVD implementation. In contrast, the
4-way STHOSVD strong scaling experiment shows good scaling up to 8192 cores,
achieving a speedup of 937x over the single core run. This difference in STHOSVD
performance is explained by the tensor dimension: a sequential EVD of a matrix of
dimension 560 does not become the bottleneck until P is large.

When comparing the two HOOI variants (which use Gram SVD), we observe that
HOOI-DT yields a sequential speedup of 1.4x over HOOI’s direct TTM implemen-
tation for the 3-way tensor. For the 4-way tensor, HOOI-DT achieves a sequential
speedup of 5.4x faster than HOOI. When comparing parallel scaling in the 3-way

7

211] 1|-= HOOI
210 7 4 |-= HOOI-DT
. HOSI
|| HOSLDT
STHOSVD

Time

| I N
YV ad D O &
NAUARN
RSO

[N S
N Y Y D0 Dap O
\%‘b\q}qﬁb

Number of Cores

Figure 3.5: Strong scaling comparison of Tucker algorithms in single precision using

a 4-way 560 x 560 x 560 x 560 input tensor

case, we see that HOOI and HOOI-DT scale to 16 cores with a speedup of 3.5x and
2.8, respectively, over their single core runs. However, neither variant scales beyond
16 cores for the 3-way tensor because of the sequential EVD bottlenecks. For the
4-way tensor, HOOI and HOOI-DT scale to 8192 cores with a speedup of 629x and
346, respectively, over their single core runs. The performance of HOOI and HOOI-
DT degrades at 128 cores (single node) because both variants are memory-bandwidth
bound, and we saturate bandwidth at 64 cores. HOOI and HOOI-DT continue scal-
ing beyond 128 cores (multi-node scaling) because memory bandwidth increases. As

can be seen in the 4096 core plots of figures 3.6 and 3.7, HOOI and HOOI-DT suffer

78

from the problem of the sequential EVD, and they are approximately twice as slow

as STHOSVD because they do twice as many EVDs over two iterations.

HOSI and HOSI-DT show significantly better scaling on the 3-way tensor when
compared to STHOSVD and the HOOI variants because of the difference in LLSV sub-
routines. HOSI-DT achieves sequential speedups of 6.5x and 1.7x over STHOSVD
and HOOI-DT, respectively. The HOSI variants scale to 4096 cores with HOSI-
DT achieving significant parallel speedups of 259x and 515x over STHOSVD and
HOOI-DT, respectively. HOSI-DT is also the fastest Tucker variant for the 4-way
experiment attaining speedups of 1.5x and 2.9x over STHOSVD and HOOI-DT,
respectively when comparing the best running times of each algorithm. HOSI and
HOSI-DT exhibit similar memory bandwidth scaling behavior as the HOOI variants
where performance degrades at 128 cores (single node) and continues to scale beyond
128 cores (multi-node scaling). These can be seen on figures 3.6 and 3.7. We chose

to showcase the breakdown using 1 core and using 4096 cores.

3-way. Observing the single-node scaling (1 to 128) of the 3-way experiment, we
notice that all HOOI algorithms outperform STHOSVD, with HOSI and HOSI-DT
being much further ahead of the competition since the large ** ratio of this experiment
implies a LLSV bottleneck and these two algorithms avoid that. Here, STHOSVD
is much slower because it does a more expensive LLSVs before the TTMs whereas
the HOOI algorithms reduce this cost by performing the TTMs beforehand. Starting

79

1 Core(s) 8 Core(s) 64 Core(s)
2,000 |- —1 300l] 200} :
<] L
g 200 | o
= 1,000 100 [~ —
,—I = 100 I
512 Core(s) 4096 Core(s) «Q XOQ\ gﬂg
T T T T T T T T T T Q‘OO W %Q‘é&
200 f -4 200 | y
© Eig/QR
= | Gram/Cont. Comm
; 100 F 1 1001 M Gram/Cont. Comp
[| TTM Comm
TTM Comp
xxo TEE® (SRS
«O 9‘0% Q’ ‘60 W %@‘2&
Figure 3.6: Running time breakdown for the synthetic 3-way tensor
1 Core(s) 8 Core(s) 64 Core(s)
1 I ; I 80 i I I | I I I I
1,000 } R
@ 60 ﬂ 20 ﬂ i
i L 1
=500 10 1 10
»NBNAL ﬂ” a
0 oL [=05 [] S0
512 Core(s) 4096 Core(s) %OO «g, %ﬂ
= T T T] o T T T T] 60 o %QQ&
Eig/QR
g 4 ﬂ 77 = Gram/Cont. Comm
g H 1r = P Gram/Cont. Comp
27 H E g B TTM Comm
TTM Com
0! ﬂ H 1 0 E = ’
® W
\X ‘2\0 RO WO \?» {00
WO RO QO W %&

Figure 3.7: Running time breakdown for the synthetic 4-way tensor

80

from 32 nodes, STHOSVD begins to outperform HOOI and HOOI-DT due to the
cost of the LLSV. Figure 3.6 demonstrates that the cost of LLSV is the same for
HOOI, HOOI-DT and STHOSVD, but because HOOI must perform two iterations,
it takes twice as long. In fact, we see that the three algorithms stagnate at large
scaling due to TuckerMPI’s limitation of having a sequential eigenvalue computation.
Though HOSI and HOSI-DT still perform two iterations, neither of them need to
pay the cost of the sequential eigenvalue decomposition. Even with a sequential QR
decomposition, they still scale best, with the lesser TTM cost of HOSI-DT making it
the best out of these five algorithms.

For the 3-way synthetic tensor on 1 core, it can be seen that the cost of the
Gram computation is the bottleneck for STHOSVD. The TTM cost for the dimension
tree algorithms are cheaper, as expected. HOSI-DT is faster than HOOIL-DT simply
because of the smaller cost for the LLSV computations. The two iterations for all
HOOI algorithms are faster than the ‘single iteration’ for STHOSVD. However, that is
not the case for the 4096 cores experiment. Now, the TTM costs for all algorithms are
negligible due to the parallel scaling. The Gram computation for STHOSVD is also
negligible now for the same reasons. The bottleneck at this scale is now the Eigenvalue
computation. The reason why HOOI, HOOI-DT, and STHOSVD stagnate over the
high number of cores on Figure 3.4 is because of TuckerMPTI’s limitation of having

a sequential eigenvalue computation, and the reason why HOOI and HOOI-DT are

81

twice as expensive on multi-node experiments is because they must do two iterations,

this fact can be visualized on the breakdown for the 4096 cores experiment.

4-way. In this experiment, HOOI-DT and HOSI-DT are the ones that get a compar-
ative headstart since the small ratio of this experiment implies a TTM bottleneck
and these two algorithms avoid that. They diverge around 128 cores for the same
reasons mentioned above as HOOI-DT must pay the cost of two expensive eigenvalue
computations. For that matter, STHOSVD still eventually catches up to HOOI-DT,
but now this happens at 512 cores as opposed to 32. For this reason, HOSI eventually
closes the gap to HOSI-DT, with STHOSVD being not too far behind simply because

of the smaller %

3.3.2 Performance on Simulation Datasets

We turn our focus for the error-specified comparison of our best algorithm, HOSI-
DT, and the state-of-the-art, STHOSVD. The data sets are decomposed using three
error tolerances; 0.1 (“high compression”), 0.05 (“mid compression”), and 0.01 (“low
compression”). Furthermore, we showcase HOSI-DT through three different types of
starting ranks for each error tolerance. Perfect starting ranks are the same as the final
ranks of STHOSVD given the maximum relative error threshold. We overshoot and
undershoot the same starting ranks by 25% above and below to force our algorithm

to respectively increase and decrease ranks on the first iteration. We cap the number

82

of iterations for HOSI-DT at 3. Though all three iterations are shown in the Error vs
Time and Error vs Size plots, the running time breakdown plots show the breakdown
only for however many iterations it took for HOSI-DT to reach the desired error
threshold. For example, the top right plot of figure 3.11 it can be seen that the
HOSI-DT (Over) 0.1 threshold reached the desired at the first iteration, so we don’t
show the breakdown for the second iteration despite its total time being shown on

figure 3.10.

Miranda (3-way)

The Miranda dataset is a three-dimensional simulation data of the density ratios of
non-reacting flow of viscous fluids [23]. Each of its dimensions is 3072, and it is stored
in single precision requiring 115 GB. Our experiments use 1024 cores (8 nodes) for all
algorithms.

Figure 3.8 demonstrates that for all error tolerances, three iterations of HOSI-
DT combined is faster than STHOSVD. But as mentioned earlier, we focus on the
least amount of iterations required to reach the desired error threshold. It is in
high- and mid-compression where we find the most speedup. Precisely, perfect ranks
achieve speedups of 82x for high-compression and 25x for mid-compression, un-
dershooting the ranks achieves speedups of 91x for high-compression and 35x for

mid-compression, and overshooting the ranks achieves speedups of 156x for high-

83

Error vs Time
I I

Error vs Size
I I I

: 0.1 : 0.1 e |
&2
4

5 0.05—i 1 0.05 |- Bm—a
o'

0.0l Te—ae e : 0011 e §

0 20 40 60 04 06 08 1 12 14 1.6

Time (in seconds)

Size (relative to STHOSVD)

——HOSI-DT Over —— HOSI-DT Perfect
—=—HOSI-DT Under = STHOSVD

Figure 3.8: Progression of time, error, and relative size over 3 iterations of rank-

adaptive HOSI-DT on the Miranda dataset using 1024 cores.

compression and 47x for mid-compression. Low-compression is the first scenario

where we observe nonnegligible costs of the core analysis subroutine. For high-
compression, the best relative compression ratio is 69% which occurs at perfect

ranks, mid-compression achieves a 10% improvement using perfect ranks, and low-

compression has better compression at 6% when underestimating the ranks.

HCCI (4-way) and SP (5-way)

We combine the discussion of the HCCI and SP datasets results, as the results
are qualitatively similar. The Homogeneous Charge Compression Ignition (HHCI)
dataset is generated from a numerical simulation of combustion [24]. The dimension

84

le-01 Error 5e-02 Error

60

40 |- - 40 -]
o))

k= B

S0t 1 S0 | .
0F=— — —_ E, o= = = E,

At et & N
N 3 oY . o°
v 5 5

1le-02 Error

Core Comm
Core Comp
Eig/QR
Contraction Comm
Contraction Comp

£
%0 i E [| TTM Comm
m

W
(@]
|
|

i O TTM Comp
888 g
66& | &60\) | qe& | ‘Q‘O |
G et O ‘6@%
S

Figure 3.9: Running time breakdown for the Miranda dataset using 1024 cores under

different levels of compression.

85

of the 4-way dataset is 672 x 672 x 33 x 626 stored in double precision for a total of
75 GB. Thus, we can fit it on a single node and use all 128 cores. The first two modes
are spatial dimensions, the third mode corresponds to 33 variable, and the fourth
mode corresponds to time steps. The SP dataset is generated from the simulation
of a statistically stationary planar methane-air flame [25]. This 5-way dataset has
dimensions 500 x 500 x 500 x 11 x 400 stored in double precision and requires 4.4
TB in storage. For these experiments, we use 2048 cores (16 nodes). The first three
modes are spatial dimensions, the fourth mode corresponds to 11 variables, and the
last mode corresponds to time steps.

In the case where we are dominated by the TTMs, the comparisons between HOSI-
DT and STHOSVD are less extreme. Figure 3.10 shows that on low-compression,
STHOSVD is faster than any of the starting ranks of HOSI-DT to get to the de-
sired threshold. However, for high- and mid-compression HOSI-DT achieves speedups
when overshooting the ranks, specifically 1.9x for high-compression and 1.4x for low-
compression, neither of which achieved better compression. Figure 3.11 shows the
breakdown times of these speedups. However, HODI-DT achieves better compres-
sion with perfect and under ranks for all error tolerances, but always requiring three

iterations to do so.

Figure 3.12 shows that we can typically obtain better compression after three it-

erations. For example, overestimating the ranks for low compression yields a speedup

86

Error vs Time Error vs Size
I I I I I

Relative Error

Eh - ()Ol—a\m-a—é. .

0.05 | l«a«s . 0.05 | \H .
i

0 5 10 15 20 04 06 08 1 12 14
Time (in seconds) Size (relative to STHOSVD)

——HOSI-DT Over —— HOSI-DT Perfect
—=-HOSI-DT Under = STHOSVD

Figure 3.10: Progression of time, error, and relative size over 3 iterations of rank-

adaptive HOSI-DT on the HCCI dataset using 128 cores.

of 1.1x after 1 iteration, but we do not obtain better compression. Similar to HCCI,
three iterations produces a smaller Tucker approximation but takes over twice as long.
However, for high compression, starting from perfect and underestimates of the ranks
achieve a 27% and 8% improvement on compression over STHOSVD after two iter-
ations, respectively. In another example, figure 3.13 shows that when starting from
perfect estimates of the ranks for mid compression, HOSI-DT gets the desired error
tolerance and same compression ratio in less time than STHOSVD, with HOSI-DT

achieving a 1.4x speedup.

87

le-01 Error 5e-02 Error
4+ B -

I R

- J—
31 I A .
o)
E 3 _ !
=2 . -
= o 2 I i
1k |
1k |
o et ¢ R s o)
Q@&‘@ \3@ oY < ‘%»O%q Qeﬁ&e \Sﬁ\d O QQ&O%Q
S S
1?—02 Err9r
5T | Core Comm
Core Comp
ok | Eig/QR
g =i [Contraction Comm
= Contraction Comp
o [| TTM Comm
a i] TTM Comp
0k — =
N < <
e o (@
S

Figure 3.11: Running time breakdown for the HCCI dataset using 128 cores under

different levels of compression.

88

Relative Error

Error vs Time

5 10 15 20 25 30
Time (in seconds)

Error vs Size
| | | |

=

020406 08 1 12 14
Size (relative to STHOSVD)

——HOSI-DT Over —— HOSI-DT Perfect
—=-HOSI-DT Under = STHOSVD

Figure 3.12: Progression of time, error, and relative size over 3 iterations of rank-

adaptive HOSI-DT on the SP dataset using 2048 cores.

89

le-01 Error 5e-02 Error

‘ 25 T
12 N] =
20 .
10 = |
o8 : 45 = -
E E
T6 = = 1 Ho :
n | =
4 5 | |
2 |
0= =
2 X X 39 X <
ot g o W RS Q@&Q%@
> S
1$—02 Err9r
207 I | Core Comm
Core Comp
15 - 7 Eig/QR
g [Contraction Comm
;10 - — . Contraction Comp
H B TTM Comm
5 = TTM Comp
\325‘*’ o o O
et Q
v %@g,

Figure 3.13: Running time breakdown for the SP dataset using 2048 cores under

different levels of compression.

90

CONCLUSION

Chapter 2 explores the realm of fast matrix multiplication algorithms. These algo-
rithms improve on the computational complexity of the classical algorithm, but the
problem of the complexity of matrix multiplication remains open. Many different
techniques are used to search for algorithms that attempt to shorten the gap be-
tween known upper bounds and proven lower bound. The techniques explored in this
chapter search for algorithms that are cyclic invariant, which decrease the number of
search parameters in a numerical optimization algorithm. With the introduction of
CI.CP_DGN, we have been able to obtain many valid algorithms with this property
for multiple base case dimensions. Our on-going work attempts to search for further
symmetries in the algorithms we have found while searching for cyclic invariant algo-
rithms. Once a more robust comprehension of these symmetries is achieved, our goal is
to study how these symmetries lay the foundation for more structure to be exploited in
the search for fast matrix mutliplication algorithms. We intend to submit this work for
publication in the near future. The code associated with this project can be found in

https://github.com/Jv7Pinheiro/FastMatrixMultiply AlgorithmsSearch.git.

91

Chapter 3 describes three optimization for the HOOI algorithm to make it a
competitive alternative to the state-of-the art algorithm ST-HOSVD. The dimension-
tree, subspace iteration optimizations reduce the computational complexity of each
HOOI iteration, and the rank adaptive optimization generalizes the method to solve

the error-specified Tucker approximation problem.

Based on the complexity analysis and experimental results, we conclude that our
parallel RA-HOSI-DT computes Tucker approximations of comparable error in less
time than TuckerMPI’s implementation of STHOSVD in two important scenarios:
(1) when large individual tensor dimensions create sequential EVD bottlenecks, and
(2) when individual ratios between input tensor and core tensor dimensions are large.
In the first case, because of the scalability of RA-HOSI-DT, we observe very large
speedups with large P. In the second case, our theoretical analysis suggests a speedup
roughly proportional to 7/r. However, we observe that while the number of flops is
reduced compared to STHOSVD, the local matrix computation performance degrades
because the smallest matrix dimension in the computation becomes r instead of n.
That is, if the ranks are very small, then local matrix computations with RA-HOSI-
DT run far below peak processor performance and are instead limited by the memory
bandwidth. This memory bandwidth bottleneck is the reason RA-HOSI-DT loses
scalability when using all cores on a single node and is the main reason the theoretical

computational cost analysis doesn’t match empirical performance at scale.

92

RA-HOSI-DT requires an input estimate of the final core ranks. While priori
knowledge is not required, we observe that slight overestimates of the final ranks
yield sufficiently accurate solutions often in the first iteration. When ranks are un-
derestimated, HOOI must iterate until an overestimate is discovered, after which a
single iteration yields convergence.

Furthermore, in solving the error-specified optimization problem, we highlight that
RA-HOSI-DT often identifies Tucker approximations with better compression ratios
than STHOSVD. This is due in large part to the flexibility afforded by the RA-HOSI-
DT core analysis step to shift ranks across modes to maximize overall compression, as
opposed to STHOSVD, which makes greedy decisions at each mode. If compression
ratio is more important than time, taking more HOOI iterations can help to improve
accuracy and often reduce ranks further.

All of our parallel implementations have been carried through in the TuckerMPI
library. We intend to merge our work with the main branch soon, which can be found
https://gitlab.com/tensors/TuckerMPI.git. This work has been submitted for

publication.

93

Bibliography

Grey Ballard and Tamara G. Kolda. Tensor Decompositions for Data Science.

Cambridge University Press, 2025.

Rodney Johnson and Aileen McLoughlin. “Noncommutative Bilinear Algorithms
for 3 x 3 Matrix Multiplication”. In: SIAM Journal on Computing 15.2 (1986),
pp. 595-603. DOI: 10.1137/0215043.

Grey Ballard et al. “The geometry of rank decompositions of matrix multipli-

cation II: 3x3 matrices”. In: arXiv 1801.00843 (2019).

Kathryn Rouse. On the Efficiency of Algorithms for Tensor Decompositions
and Their Applications. Available from Dissertations and Theses at Wake For-
est University; ProQuest Dissertations and Theses Global. (2051225085). 2018.
URL: https://wake.idm.oclc.org/login?url=https://www.proquest.com/
dissertations-theses/on-efficiency-algorithms-tensor-decompositions/

docview/2051225085/se-2.

Jan R. Magnus and H. Neudecker. “The Commutation Matrix: Some Properties
and Applications”. In: The Annals of Statistics 7.2 (1979), pp. 381-394. DOI:
10.1214/a0s/1176344621.

Woody Austin, Grey Ballard, and Tamara G. Kolda. “Parallel Tensor Compres-
sion for Large-Scale Scientific Data”. In: Proceedings of the 30th IEEE Interna-

tional Parallel and Distributed Processing Symposium. May 2016, pp. 912-922.

94

[10]

[11]

[12]

DOI: 10.1109/IPDPS.2016.67. URL: https://www. computer . org/csdl/
proceedings/ipdps/2016/2140/00/2140a912-abs.html.

V. T. Chakaravarthy et al. “On Optimizing Distributed Tucker Decomposition
for Dense Tensors”. In: 2017 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS). May 2017, pp. 1038-1047. po1: 10.1109/IPDPS.
2017 .86.

Jee Choi, Xing Liu, and Venkatesan Chakaravarthy. “High-performance Dense
Tucker Decomposition on GPU Clusters”. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Anal-
ysis. SC '18. Dallas, Texas: IEEE Press, 2018, 42:1-42:11. URL: http://dl.
acm.org/citation.cfm?id=3291656.3291712.

Grey Ballard, Alicia Klinvex, and Tamara G. Kolda. “TuckerMPI: A Parallel
C++/MPI Software Package for Large-Scale Data Compression via the Tucker
Tensor Decomposition”. In: ACM Transactions on Mathematical Software 46.2
(June 2020). 1SSN: 0098-3500. DOI: 10.1145/3378445. URL: https://dl.acm.
org/doi/10.1145/3378445.

Rafael Ballester-Ripoll, Peter Lindstrom, and Renato Pajarola. “TTHRESH:
Tensor Compression for Multidimensional Visual Data”. In: IEEE Transactions
on Visualization and Computer Graphics 26.9 (2020), pp. 2891-2903. poO1: 10.
1109/TVCG.2019.2904063.

Wouter Baert and Nick Vannieuwenhoven. “Algorithm 1036: ATC, An Ad-
vanced Tucker Compression Library for Multidimensional Data”. In: ACM Trans-
actions on Mathematical Software 49.2 (June 2023), pp. 1-25. DOI: 10.1145/
3585514.

Saibal De et al. “Hybrid Parallel Tucker Decomposition of Streaming Data”.
In: Proceedings of the Platform for Advanced Scientific Computing Conference.
PASC ’24. Zurich, Switzerland: Association for Computing Machinery, 2024.

95

[13]

[14]

[16]

[17]

[18]

ISBN: 9798400706394. DOI: 10.1145/3659914 .3659934. URL: https://doi.
org/10.1145/3659914.3659934.

Nick Vannieuwenhoven, Raf Vandebril, and Karl Meerbergen. “A New Trunca-
tion Strategy for the Higher-Order Singular Value Decomposition”. In: SIAM
Journal on Scientific Computing 34.2 (2012), A1027-A1052. po1: 10. 1137/
110836067. eprint: http://dx.doi.org/10.1137/110836067. URL: http:
//dx.doi.org/10.1137/110836067.

Wolfgang Hackbusch. Tensor Spaces and Numerical Tensor Calculus. 2nd. Springer

International Publishing, 2019. 1SBN: 9783030355548. DOI: 10.1007/978-3-
030-35554-8.

Pieter M Kroonenberg and Jan De Leeuw. “Principal component analysis of
three-mode data by means of alternating least squares algorithms”. In: Psy-

chometrika 45 (1980), pp. 69-97. DOI: 10.1007/BF02293599.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. “On the best rank-1
and rank-(ry, 79, ...,7,) approximation of higher-order tensors”. In: SIAM jour-
nal on Matriz Analysis and Applications 21.4 (2000), pp. 1324-1342. po1: 10.
1137/5089547989834699.

Arie Kapteyn, Heinz Neudecker, and Tom Wansbeek. “An approach to n-mode
components analysis”. In: Psychometrika 51 (1986), pp. 269-275. por: 10.1007/
BF02293984.

Venkatesan T Chakaravarthy et al. “On optimizing distributed Tucker decompo-
sition for dense tensors”. In: 2017 IEEFE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE. 2017, pp. 1038-1047. por: 10.1109/
IPDPS.2017.86.

Linjian Ma and Edgar Solomonik. “Accelerating alternating least squares for
tensor decomposition by pairwise perturbation”. In: Numerical Linear Algebra

with Applications €2431 (2022), pp. 1-33. DOT: 10.1002/nla.2431.

96

[21]

[22]

[25]

Anh-Huy Phan, Petr Tichavsky, and Andrzej Cichocki. “Fast Alternating LS
Algorithms for High Order CANDECOMP /PARAFAC Tensor Factorizations”.
In: IEEE Transactions on Signal Processing 61.19 (Oct. 2013), pp. 4834-4846.
ISSN: 1053-587X. DOI: 10.1109/TSP.2013.2269903.

Oguz Kaya and Yves Robert. “Computing dense tensor decompositions with
optimal dimension trees”. In: Algorithmica 81 (2019), pp. 2092-2121. pOTI: 10.
1007/s00453-018-0525-3.

Rachel Minster, Zitong Li, and Grey Ballard. “Parallel Randomized Tucker
Decomposition Algorithms”. In: SIAM Journal on Scientific Computing 46.2
(2024), A1186-A1213. por: 10.1137/22m1540363. URL: https://doi.org/10.
1137/22M1540363.

Kai Zhao et al. “SDRBench: Scientific Data Reduction Benchmark for Lossy
Compressors”. In: IEEE International Conference on Big Data. 2020, pp. 2716—
2724. DOIL: 10.1109/BigDatab50022.2020.9378449.

Ankit Bhagatwala, Jacqueline H. Chen, and Tianfeng Lu. “Direct numerical
simulations of HCCI/SACI with ethanol”. In: Combustion and Flame 161.7
(2014), pp. 1826-1841. 1ssN: 0010-2180. pDOI: 10.1016/j . combustflame.2013.
12.027. URL: https://www.sciencedirect.com/science/article/pii/

50010218014000030.

Hemanth Kolla et al. “Velocity and Reactive Scalar Dissipation Spectra in
Turbulent Premixed Flames”. In: Combustion Science and Technology 188.9
(2016), pp. 1424-1439. pOI: 10.1080/00102202.2016.1197211. eprint: https:
//doi.org/10.1080/00102202.2016.1197211. URL: https://doi.org/10.
1080/00102202.2016.1197211.

97

CURRICULUM VITAE

Joao Pinheiro

deolj19@wfu.edu | jv7pinheiro.github.io

EDUCATION

Wake Forest University, Winston-Salem, North Carolina

Masters of Science in Computer Science, GPA 3.9, May 2025

Wake Forest University, Winston-Salem, North Carolina

Bachelor of Science in Applied Mathematics, May 2023, Cum Laude
Minors in Computer Sciences and in Schools, Education, and Society (SES)
Westhill Institute, Mexico City

IB Diploma, May 2019

RESEARCH EXPERIENCE

In Computer Science

e Tensor Decompositions, Dr. Grey Ballard & Dr. Aditya Devarakonda, Summer

2023 - Spring 2025

e Fast Matrix Multiplication, Dr. Grey Ballard & Dr. Frank Moore, Summer
2023 - Spring 2025

98

e Machine Learning & Computer Vision, Dr. Paul Pauca, Fall 2022 - Spring 2023

In Education

e Latin American Education, Dr. Betina Wilkinson, Fall 2019 - Spring 2020

e Educational Computer Science, Dr. Ali Sakkal, Spring 2023, (SES Minor Senior

Project)

PROFESSIONAL EXPERIENCE

Research Assistant, Department of Computer Science WFU, July 2023 - Spring
2025

Teaching Assistant, Department of Computer Science WFEFU, Spring 2025
Academic Tutor, Math and Stats Center WFU, January 2021 - Spring 2025
Student Tutor, Latinz Mentoring Initiative at Latino Community Services, August

2019 - December 2020

Mentor, Big Brother Big Sisters, January 2019 - December 2020

PUBLICATIONS AND PRESENTATIONS

e K. Cui, Z. Shao, G. Larsen, V.P. Pauca, S. Alqahtani, D. Segurado, J. Pinheiro,
M. Wang, D. Lutz, R. Plemmons, and M. Silman. 2024. PalmProbNet: A Prob-
abilistic Approach to Understanding Palm Distributions in Ecuadorian Tropical
Forest via Transfer Learning. Proceedings of the 2024 ACM Southeast Confer-
ence (ACMSE "24). ACM, 272-277. https://doi.org/10.1145/3603287.3651220

99

e Searching for Cyclic-Invariant Fast Matrix Multiplication Algorithms. Pre-
sented at Workshop on Sparse Tensor Computations in October 2023 and Grad-
uate School of Arts & Sciences Graduate Student and PostDoc Research Day

in March 2024 (Both were poster presentations of the same project).

e Introducing a Parallel Implementation For HOOI Tucker Tensor Decomposition
With Rank Adaptivity. Presented at the SIAM Conference on Computational

Science and Engineering in March 2025.

e Joao Pinheiro, Grey Ballard, Frank Moore, Pratyush Mishra, The geometry of

rank decompositions of matrix multiplication III: 4x4 matrices (in preparation)

e Joao Pinheiro, Grey Ballard, Aditya Devarakonda, Introducing Parallel Rank-

Adaptive Higher Order Orthogonal Iteration. (submitted to SC25)

SPECIAL SKILLS

Programing Languages: MATLAB, C/C++, OpenMP/OpenMPI, Java, Python, Git,

Slurm, Bash, Latex/Tikz Fluent in English, Spanish, Portuguese, and Italian.

100

