
ADVANCES IN TENSOR DECOMPOSITIONS: FAST MATRIX

MULTIPLICATION ALGORITHMS AND PARALLEL ADAPTIVE

COMPRESSION TECHNIQUES

BY

JOÃO VICTOR DE OLIVEIRA PINHEIRO

A Thesis Submitted to the Graduate Faculty of

WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES

in Partial Fulllment of the Requirements

for the Degree of

MASTER OF SCIENCE

Computer Science

May 2025

Winston-Salem, North Carolina

Approved By:

Grey Ballard, Ph.D., Advisor

Aditya Devarakonda, Ph.D., Chair

Frank Moore, Ph.D.

Ramakrishnan Kannan, Ph.D.

ACKNOWLEDGEMENTS

Antes de mais nada gostaria de dedicar este trabalho aos meus pais, que sob muito

sol, zeram-me chegar até aqui, na sombra. Tudo que eu tenho eu devo a eles,

em compensação, tudo o que eu faço, faço pensando neles. Carlo Giovanni e Doris

Pinheiro, amo vocês mais do que minha propria vida. Desejo a minha irmã, Ana

Carolina Pinheiro, o mundo inteiro, pois ela merece isso tudo e um pouco mais.

I would like to thank the Wake Forest Computer Science Department for funding

my graduate work. This work was funded by the NSF Grant No. CCF-1942892

and OAC-210692. I am truly appreciative of the Sparsitute for fostering a wonderful

environment of talented and creative people.

I am thankful to Dr. Paul Pauca for being my rst ever computer science professor

as he was fundamental for my upbringing in this eld. Even after nishing his assign-

ments quite early on he would always encourage my intellectual curiosity. I would

like to thank Dr. Samuel Cho for pushing me outside my comfort zone multiple times

and teaching many important lessons in the process. I would like to thank Dr. Errin

Fulp for always being a comforting person to talk to in the good and bad times.

His door was always open, and a friendly conversation always awaited on the other

side. I would like to thank Dr. Pete Santago for his steady guidance realism when I

needed it most, and bringing humor to our everyday conversations. I would like to

thank Dr. Daniel Cañas, whose tough words in our early interactions challenged me

more than he may have realized. Today, I am grateful not only for the motivation he

sparked, but also for the friendship and respect we now share. I would like to thank

Dr. Natalia Khuri for her no-nonsense wisdom and the countless practical lessons she

shared with me. I would like to give special thanks to Cody Stevens, whose impact

on this department—and on me personally—is immeasurable. Our countless conver-

sations, both technical and personal, fueled my passion and kept me going when I

needed it most.

ii

Prior to my move to the Department of Computer Science I was an undergraduate

student in the Department of Mathematics. I would now like to thank the following

people from that Department. I would like to express my tremendous gratitude to

Dr. Lynne Yengulalp for giving my rst ever job in the Math and Stats Center. This

tutor position she has given me has ignited my passion for teaching and helping others.

I would like to thank Dr. Stephen Robinson for his kindness and friendliness outside

of class, and it was during his course that I realized that my true passion lied in the

Mathematics. I would like to thank Dr. Pratyush Mishra for being an exceptional

research collaborator. Though we often approached the same problems from the

distinct lenses of mathematics and computer science, it was through navigating that

dierence that I learned the true art of communicating ideas across disciplines. I

would like to thank Dr Leandro Lichtenfelz and Dr. Leonardo Cella as they have

shown me the dierence it makes seeing someone of equal ethnical background as a

rolemodel. I would like to thank Dr. John Gemmer, my undergraduate advisor, whose

honest and thoughtful guidance played a key role in both my decision to pursue a

masters in computer science and my Ph.D. applications this cycle. He always knew

exactly what to say—never sugarcoating, never discouraging—just clear, grounded

advice that helped me nd the path where I truly belong.

Most importantly, I would like to thank my committee for supporting me in every

step of the way. I would like to thank Dr. Ramakrishnan Kannan, whose kindness

and humility left a lasting impression on me during my rst academic conference. At

a time when I felt out of place and overwhelmed, his welcoming presence reminded

me that academia is not only about research, but also about community. I would

like to thank Dr. Frank Moore for not only always laughing the hardest at my jokes,

and for his transparency and help in crucial times. I thought I knew how to code

until I begain working with Dr. Aditya Devarakonda. Through our work together,

he taught me what it means to write code at a research level with great rigor and

purpose. Last, but not least, is Dr. Grey Ballard. I have a feeling that in my entire

iii

life, I will meet few people like him. Just witnessing his genuine passion for what he

does—teaching, researching, and mentoring—is simply indescribably inspiring. I am

truly grateful and honored to have been mentored by him.

I couldnt possibly have made it without all the friends that were part of my life,

especially for the past two years. I would like to thank all my friends from both cohorts

I was a part of. Especially Cade Wiley, Nikhil Rajkumar, Ziyue (Parry) Yang, William

Bailey, Alejandro Gonzalez Rubio, e meu irmão Raniery Mendes. Additionally, I am

truly grateful to have met the amazing Whitener family, particularly NathanWhitener

who has always been by my side since day one of this program. I also dedicate this

work to my amazing partner, Andie Barnes, one of the most hardworking, intelligent,

and kindhearted people I have ever had the pleasure of knowing.

iv

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS . vii

LIST OF ABREVIATIONS . ix

ABSTRACT . x

Chapter 1 Introduction . 1

1.1 Tensors and Their Subparts . 1

1.1.1 What Is A Tensor? . 1

1.1.2 Slices and Fibers . 4

1.1.3 Tensor Mode-k Unfoldings . 6

1.1.4 Types of Tensor Multiplication 6

1.2 Tensor Decompositions . 18

1.2.1 Kruskal Tensors and the CP Decomposition 19

1.2.2 Tucker Tensors and The Tucker Decomposition 21

Chapter 2 Search For Fast Matrix Multiplication Algorithms 23

2.1 Matrix Multiplication Algorithms . 24

2.1.1 Fast Matrix Multiplication Algorithms 24

2.1.2 The Matrix Multiplication Tensor 28

2.1.3 Damped Gauss Newton Optimization for CP Decompositions 32

2.2 Cyclic Invariance . 36

v

2.2.1 Cyclic Invariant Matrix Multiplication Algorithms 37

2.2.2 Adapting CP DGN to Cyclic Invariance 41

2.2.3 Heuristics and Our Findings 45

2.3 Further Structure in Matrix Multiplication Algorithms 48

Chapter 3 Parallel Rank-Adaptive HOOI . 50

3.1 Tucker Algorithms . 54

3.1.1 ST-HOSVD . 55

3.1.2 Classic HOOI . 56

3.1.3 HOOIs Dimension Trees Optimization 58

3.1.4 HOOIs Subspace Iteration Optimization 60

3.1.5 HOOIs Adaptive Rank Optimization 61

3.2 The TuckerMPI Library . 64

3.2.1 TuckerMPIs ST-HOSVD . 64

3.2.2 TuckerMPIs HOOI . 66

3.2.3 TuckerMPIs Dimension Tree 69

3.2.4 TuckerMPIs Subspace Iterations 70

3.2.5 TuckerMPIs Adaptive Rank 72

3.3 Results . 73

3.3.1 Strong Scaling on Synthetic Tensors 76

3.3.2 Performance on Simulation Datasets 82

CONCLUSION . 91

REFERENCES . 94

CURRICULUM VITAE . 97

vi

LIST OF ILLUSTRATIONS

1.1 Tensors of orders one, two, and three 2

1.2 Tensors of orders four and ve . 4

1.3 Two-way slices of a 3-way tensor . 5

1.4 Fibers of a 3-way tensor . 6

1.5 Unfoldings of a 3-way tensor . 7

1.6 Mode-1 TTM . 11

1.7 Mode-2 TTM . 12

1.8 Mode-3 TTM . 14

1.9 The CP Decomposition . 19

1.10 A 3-way Tucker Tensor Diagram . 21

2.1 Classic 2 by 2 Matrix Multiplication Algorithm 25

2.2 Classic Strassens Algorithm . 26

2.3 Permuted Strassens Algorithm . 27

2.4 Variant Strassens Algorithm . 28

2.5 Exhaustive Search of Fast MatMul Algorithms 29

2.6 Matrix Multiplication in Tensor Format 30

2.7 A comparison of classic Strassens algorithm 32

2.8 Cyclic Invariance in Strassens Algorithm 38

2.9 Dierent types of Cyclic Invariance in Strassens Algorithm 39

vii

2.10 Cyclic Invariance in a KTensor . 40

2.11 CP Decomposition Diagram with Cyclic Invariant Structure 41

3.1 The Tensor Decomposition Trade-O 51

3.2 A 6-way Dimension Tree . 59

3.3 Adaptive HOOI . 61

3.4 3-way Strong Scaling . 77

3.5 4-way Strong Scaling . 78

3.6 Running Time Breakdown 3way Sunthetic Dataset 80

3.7 Running Time Breakdown 4way Sunthetic Dataset 80

3.8 Miranda Dataset - Progression of Time, Trror, and Relative Size . . . 84

3.9 Miranda Dataset - Running Time Breakdown 85

3.10 HCCI Dataset - Progression of Time, Error, and Relative Size 87

3.11 HCCI - Running Time Breakdown . 88

3.12 SP Dataset - Progression of Time, Error, and Relative Size 89

3.13 SP Dataset - Running Time Breakdown 90

viii

LIST OF ABREVIATIONS

CP Decompositions

CP: Canonical Polyadic

Tucker Decompositions

DT: Dimention Trees

EVD: Eigenvalue Decomposition

HOOI: Higher Order Orthogonal Iterations

HOSI: Higher Order Subspace Iterations

HOSVD: Higher Order Singular Value Decomposition

LLSV: Left Leading Singular Values

ST-HOSVD: Sequentially Truncated Higher Order Singular Value Decomposition

SVD: Singular Value Decomposition

ix

ABSTRACT

Tensors are essential in modern-day computational and data sciences. This work

presents recent advances in tensor decompositions, which are techniques that break

down complex high-dimensional arrays into smaller structured components. There

are two projects presented in this thesis, each with its own abstract and chapter.

Searching For Cyclic Invariant Fast Matrix Multiply Algorithms using

the CP Decomposition: Fast matrix multiplication algorithms correspond to exact

CP decompositions of tensors that encode matrix multiplication of xed dimensions.

This 3-way matrix multiplication tensor has cyclic symmetry: the entry values are

invariant under cyclic permutation of the indices. The CP decomposition of Strassens

original fast matrix multiplication algorithm for 2x2 matrices is cyclic invariant, which

means a cyclic permutation of the CP factors results in the same CP components,

just in a dierent order. We describe how to search for cyclic invariant solutions

using the damped Gauss-Newton optimization method along with heuristic rounding

techniques. We not only summarize the algorithms discovered so far but also attempt

to search for further symmetries in these algorithms by describing the requirements

for an algorithms to admit such symmetries.

Parallel Rank-Adaptive Higher-Order Subspace Iteration for the Tucker

Decomposition: Higher Order Orthogonal Iteration (HOOI) is an iterative algo-

rithm that computes a Tucker decomposition of xed ranks of an input tensor. In

this work we modify HOOI to determine ranks adaptively subject to a xed ap-

proximation error, apply optimizations to reduce the cost of each HOOI iteration,

x

and parallelize the method in order to scale to large dense datasets. We show that

HOOI is competitive with the Sequentially Truncated Higher Order Singular Value

Decomposition (STHOSVD) algorithm, particularly in cases of high compression ra-

tios. Our proposed rank-adaptive HOOI can achieve comparable approximation error

to STHOSVD in less time, sometimes achieving a better compression ratio. We

demonstrate that our parallelization scales well over thousands of cores and show

using three scientic simulation datasets that HOOI outperforms STHOSVD in high-

compression regimes. For example, for a 3D uid-ow simulation dataset, HOOI

computed a Tucker decomposition 82x faster and achieved a compression ratio 50%

better than STHOSVDs.

xi

Introduction

1.1 Tensors and Their Subparts

1.1.1 What Is A Tensor?

There is no widely agreed upon denition of a tensor; dierent elds dene it dier-

ently. For the purposes of this work, we dene tensors through the denition widely

used in the eld of computer science. A tensor is a d-way array, where d is referred

to as the order of the tensor. We use the following notational conventions. The

set of real values is denoted as R. Letters m,n, p, q, r are used to represent sizes

(or simply n1, · · · , nd) and letters i, j, k, ℓ are used to represent indices (or simply

i1, · · · , id). For the sake of simplication, let [n] ≡ [1, · · · , n], and furthermore let

[m]⊗ [n] ≡ (i, j)  i  [m], j  [n]. Some lower order tensors have other names:

• A scalar is a zero-dimensional tensor. This is any number x  R.

• A vector is a one-dimensional array of scalars. This is visualized in gure 1.1a.

1

We represent vectors by lowercase boldface roman letters. If x is a real-valued

vector of size n, then we write that x  Rn. Entry i  [n] of x is denoted as

x(i), or compactly as xi. A vector is a tensor of order 1. Instead of referring to

them as 1-way tensors, they will simply be referred to as vectors.

• A matrix is a two-dimensional array of scalars, such as a collection of vectors.

This is visualized in gure 1.1b. We represent matrices by uppercase boldface

roman letters. If X is a real-valued matrix of size m × n, then we write X 

Rm×n. The matrix entry X(i, j) represents the ith entry of column vector j.

More generally, entry (i, j)  [m]⊗ [n] of X is denoted as X(i, j) or compactly

as xi,j . A matrix is a tensor of order 2. Instead of referring to them as order 2

tensors, they will simply be referred to as matrices.

xn

1

(a) Vector x  Rn is a

1-way tensor

Xm

n

(b) Matrix X  Rm×n is a

2-way tensor

Xm

n

p

(c) Tensor X  Rm×n×p is a

3-way tensor

Figure 1.1: Tensors of orders one, two, and three

If we have a three-dimensional array of scalars, then we have a higher-order tensor.

Tensors of order 3 or greater are denoted by uppercase mathematical calligraphy

2

letters: X . This is visualized in gure 1.1c. If X is a real-valued tensor of size

m×n× p, then we write X  Rm×n×p. For instance, given a set of m objects, each of

which has n features, measured under p dierent scenarios, the tensor entry X (i, j, k)

represents the jth feature of object i measured in scenario k. More generally, entry

(i, j, k)  [m]⊗ [n]⊗ [p] of X is denoted as X (i, j, k) or compactly as xi,j,k. We refer

to each dimension as a mode. Of a 3-way tensor, we say that mode 1 is of size m,

mode 2 of size n, and mode 3 of size p. If all modes have the same size, we call this

tensor cubical or refer to it as a tensor with uniform dimensions.

As mentioned earlier, any tensor of order greater than or equal to three is simply

referred to as a higher-order tensor. But we begin to run out of letters to describe its

size and index its modes. This is when we resort to subscripts mentioned earlier when

notation was discussed. Figure 1.2 illustrates 4-way and 5-way tensors. There, we

can visualize the recursive nature of tensors. A 4-way tensor is can be visualized as

an array of 3-way tensors. Similarly, a 5-way tensor can be visualized as a matrix of

3-way tensors. In applications, a simulation in 3 spatial dimensions through time that

tracks a certain number of variables produces a 5-way tensor of data. To consolidate

some of this information, we refer to table 1.1.

3

n4




n1

n2
n3

...








(a) A 4D Tensor

X  Rn1×n2×n3×n4

n4

n5


n1

n2
n3 · · ·





...
. . .

...



 · · ·







(b) A 5D Tensor

X  Rn1×n2×n3×n4×n5

Figure 1.2: Tensors of orders four and ve

Description Size Order Notation Entry

Scalar 1 0 x x
Vector n 1 x x(i) or xi

Matrix m× n 2 X X(i, j) or xij

3-way tensor m× n× p 3 X X(i, j, k) or xijk

4-way tensor n1 × n2 × n3 × n4 4 X X(i1, i2, i3, i4) or xi1i2i3i4
d-way tensor n1 × n2 × · · · × nd d X X(i1, i2,    , id) or xi1i2···id

Table 1.1: Tensor Notation by Order

1.1.2 Slices and Fibers

A slice of a 3-way tensor X  Rm×n×p is a 2-way subtensor (which is a matrix). The

ith horizontal slice is a matrix of size n× p given by X (i, :, :). The jth lateral slice

is a matrix of size m× n given by X (:, j, :). The kth frontal slice is a matrix of size

m × n given by X (:, :, k). The three types of slices for 3-way tensors are shown in

gure 1.3.

The concept of slices is generalizable for higher-order tensors of order greater than

4

(a) Horizontal Slices X (i, :, :) (b) Lateral Slices X (:, j, :) (c) Frontal Slices X (:, :, k)

Figure 1.3: Two-way slices of a 3-way tensor

or equal to 4, those are called hyperslices. Tensor bers are the analogs of rows and

columns of matrices. The main dierence between matrx rows and columns and

tensor bers is that tensor bers are always oriented as column vectors when used in

calculations. For a 3-way tensor, of size m× n× p, we have the following:

• The mode-1 bers of length m, also known as column bers, range over all

indices in the rst mode, holding the second and third indices xed. In other

words, there are np column bers of the form x:jk  Rm. This can be visualized

on Figure 1.4a.

• The mode-2 bers of length m, also known as row bers, range over all

indices in the second mode, holding the rst and third indices xed. In other

words, there are mp row bers of the form xi:k  Rn.This can be visualized on

Figure 1.4b.

• The mode-3 bers of length m, also known as tube bers, range over all

indices in the third mode, holding the rst and second indices xed. In other

5

words, there are mn tube bers of the form xij:  Rp. This can be visualized

on gure 1.4c.

(a) Column Fibers x:jk (b) Row Fibers xi:k (c) Tube Fibers xij:

Figure 1.4: Fibers of a 3-way tensor

1.1.3 Tensor Mode-k Unfoldings

The elements of a tensor can be rearranged to form various matrices in a procedure

referred to as unfolding, also known as matricization since the result is always a

matrix. A particular unfolding of interest is the mode-k unfolding which is dened

as a matrix whose columns are the mode-k bers of that tensor. The notation for a

mode-k unfolding of a tensor X is X(k). Figure 1.5 illustrates the mode-k unfoldings

of a 3-way tensor.

1.1.4 Types of Tensor Multiplication

There exists a variety of tensor operations. Given that multiplication involves two

entities, this subsection aims to systematically explore the dierent forms of tensor

multiplication by incrementally increasing the dimensionality of the operands. For

6

m

(a) Mode 1 Fibers

m

(b) Mode 1 Unfolding X1

n

(c) Mode 1 Fibers

n

(d) Lateral Slices X2

p

(e) Mode 3 Fibers

p

(f) Frontal Slices X3

Figure 1.5: Unfoldings of a 3-way tensor

instance, the multiplication of two order-zero tensors is trivial, as it corresponds to

the multiplication of two scalars. By increasing the dimensionality on one side of

the multiplication while keeping the other xed, we arrive at the multiplication of an

order-zero tensor with an order-one tensor—that is, a scalar and a vector. In this

case, the operation simply scales the entries of the vector by the scalar. Proceeding

further, we consider the multiplication of two order-one tensors, i.e., vector-vector

products. In this context, two primary products are dened: the inner product and

the outer product, both of which are described below. As we explore these tensor

7

multiplication types, two key concepts emerge: the matching of dimensions and the

contraction of those matched dimensions.

Vector Inner Products

The inner product of two same-sized vectors a,b  Rn produces a scalar, is denoted

as ⟨a,b⟩ = a⊺b, and is dened as

⟨a,b⟩ = a⊺b =

a1 · · · an





b1
...

bn


 =

n

i=1

aibi (1.1)

The vector 2-norm is dened as the square root of the inner product of a vector with

itself:


⟨a, a⟩. The computational complexity of vector inner products is O(n).

Vector Outer Products

In contrast to vector inner products, which are a reductive operation generating a

scalar, vector outer products are an expansive operation that generates a matrix.

Vector outer products are dened for multiple vectors, which is why we avoid the

common notaion of ab⊺. We start by dening the outer products of two vectors.

Given two vectors a  Rn and b  Rm, their vector outer product is dened as

8

C = a ◦ b  Rm×n, where cij = aibj , ∀(i, j)  [m]⊗ [n], or




a1b1 · · · a1bn
...

. . .
...

amb1 · · · ambn


 =




a1
...

am




b1 · · · bn


 (1.2)

Therefore, the outer product of two vectors generates a 2-way tensor. In general,

the outer product of d vectors generates a d-way tensor, and it is written as X =

x1 ◦ · · · ◦ xd. The computational complexity of the outer product of two vectors of

size m and n respectively is O(mn). In general, the computational complexity of d

vectors of respective size of n1, · · · , nd is O(
d

i=1 nd).

Matrix-Vector Products

Given a matrix A  Rm×n and vector x  Rn, the matrix-vector product is dened

as

y = Ax  Rm, where yi =

n

j=1

aijxj for all i  [m], or




a11x1 + · · ·+ a1nxn

...

am1x1 + · · ·+ amnxn


 =




a11 · · · a1n
...

. . .
...

am1 · · · amn







x1

...

xn


  (1.3)

The computational complexity of the matrix-vector product is O(mn).

9

Matrix-Matrix Products

Given two matrices A  Rm×p and B  Rp×n, the matrix-matrix product is dened

as

C = AB  Rm×n, where cij =

p

k=1

aikbkj , ∀(i, j)  [m]⊗ [n] (1.4)

The computational complexity of the matrix-matrix product is O(mnp). In gen-

eral, the computational complexity of multiplying two same-sized matrices of size n

by n is O(n3). A simple and yet noteworthy example is 2 by 2 matrix multiplication:


 a11 a12

a21 a22




 b11 b12

b21 b22


 =


 a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22


 , (1.5)

which shows that matrix multiplication is performed by inner products of all pairs of

the rows of A with the columns of B.

Tensor-Times-Matrix (TTM) Products

The tensor-times-matrix (TTM) product is a mode-wise multiplication denoted as

Y = X ×kA where X is a tensor, k is the mode for the TTM, and A is a matrix. This

product can be transformed into a matrix-matrix product using tensor unfoldings, as

we can dene the product as Y(k) = AX(k). As the columns of a mode-k unfolding are

the bers of mode k, we can also interpret the TTM product in terms of the matrix

acting on the bers. In other words, the TTM multiplies each mode-k ber of X by

A. In gure 1.6b we see the notion that a TTM multiplies each column ber of X by

10

the rows of A, and in gure 1.6b we see the notion that this is equivalent to unfolding

the input and output tensors and performing a regular matrix multiplication.

Y  Rq×n×p

=

A  Rq×m

X  Rm×n×p

(a) Tensor form: the rst row of A and rst mode-1 ber of X are emphasized with arrows.

Y(1)  Rq×np

=

A  Rq×m

X(1)  Rm×np

(b) Matrix form.

Figure 1.6: Mode-1 TTM (along column bers)

Mathematically, the Tensor Times Matrix (TTM) operation has the same struc-

ture os matrix multiplication. Mode-1 TTMs, in particular, align closely with the

intuitive understanding presented in gure 1.6. However, practical implementations

become more complex for higher modes, as the tensors memory layout signicantly

inuences the computation. The technical details involved in these practical consid-

erations are beyond the scope of this work. For a more in-depth treatment of TTM

implementation, see [1].

Because of this omission, gure 1.7 showcases the mathematical way of represent-

ing a TTM on mode 2, which is not how it is performed computationally. Similarly to

11

mode-1 TTM, we visualize it in its tensor format in gure 1.7a as applying the xmatrix

A to the row bers of X . If we wish to visualize this TTM as matrix multiplication,

there is no transpose, and gure 1.7b has the same format as gure 1.6b.

Y  Rm×r×p

=

X  Rm×n×p

A⊺  Rn×r

(a) Tensor form: the rst row of A and rst mode-2 ber of X are emphasized with arrows.

Y(2)  Rr×mp

=

A  Rr×n

X(2)  Rn×mp

(b) Matrix Form

Figure 1.7: Mode-2 TTM (along row bers)

It is in the matrix-multiplication format that one can understand best the nature

of the details of how TTM operations are performed computationally. The best mode

to understand the complications that arise in practical TTM operations is the last

mode of a tensor. For the 3-way case, that can be seen in gure 1.8. Notice that the

12

matrix multiplication format of this TTM in gure 1.8b has been adapted to have

the transpose of all elements involved. This is to avoid any data memory movement

which is deemed expensive. Again, more details of this can be found on [1]. For the

3-way case, the cost of a TTM of a cubical tensor of size n and a matrix of size n by

n is O(n4). For the general case, A  Rr×nk and a tensor X  Rn1×···×nk×···×nd , the

computational complexity is O(r ·d
i=1 nd).

Tensor-Times-Tensor (TTT) products

The last type of Tensor multiplication required for this work is the Tensor-Times-

Tensor (TTT) multiplication, which is also known as Tensor Contraction. Before

proceeding to this next case—which is considerably more challenging to visualize

using the illustrative methods employed thus far—it is worthwhile to briey revisit

the types of multiplication discussed up to this point.

Notice how from the rst type of multiplication covered, we required the inner

dimensions to match. For vector-vector products, there were two types of multipli-

cation as there are two ways we can match the dimensions. An array a  Rn can be

multiplied by an array b of the same length either through ⟨a,b⟩ (inner product) or

a ◦b (outer product). In other words, we could either perform a 1 by n times n by 1

inner product or an n by 1 times a 1 by n outer product. The former contracts the

inner dimension of size n to produce a 1 by 1 scalar, and the latter contracts the inner

13

Y  Rm×n×r

=

X  Rm×n×p

A  Rs×p

(a) Tensor form: the rst row of A and rst mode-3 ber of X are emphasized with arrows.

Y⊺
(3)  Rmn×s

=

X⊺
(3)  Rmn×p

A⊺  Rp×s

(b) Matrix Form

Figure 1.8: Mode-3 TTM (along tube bers)

14

dimension of size 1 to produce an n by n matrix. The same idea of contracting the

matching inner dimensions can be seen in matrix-vector products where we match the

second dimension of matrix A  Rm×n to the rst dimension of vector x  Rn, where

they are then contracted to produce a vector of size m. In matrix-multiplication we

match the inner dimenions of two matrices, contract those two matching dimensions,

and the size of the output matrix is the outer dimensions of the two matrices. In a

mode-k TTM we match the columns of matrix to the mode-k bers of a tensor X ,

then the kth mode is contracted. The idea of the generalized tensor contraction is the

same; we contract some subset of the matching modes of two tensors.

Consider two tensors, X  Rm×n×p and Y  Rp×q×r. The last mode of X matches

the size of the rst mode of Y , so we can contract along those modes. The result is

a tensor Z  Rm×n×q×r dened by

Z(i1, i2, j1, j2) =

p

k=1

X (i1, i2, k)·Y(k, j1, j2), ∀(i1, i2, j1, j2)  [m]⊗[n]⊗[q]⊗[p] (1.6)

As mentioned earlier, the nature of the drawings presented so far are not useful

for visualizing this form of multiplication. Tensor contractions can get complicated

not only because of this change in visualization, but also in the notation for d-way

tensor contractions. Since the details go beyond the scope of this work, they will be

omitted. For this work, it suces to know that as long as one or more modes of two

tensors match, a contraction is possible along those modes.

15

Other Types of Matrix-Matrix Products

We now go over a few other matrix products that come up in the context of tensor

decompositions.

Matrix Hadamard Products

Given two same-sized matrices A,B  Rm×n, their Hadamard product, also known

as element-wise product, is

C = A ∗B  Rm×n, where cij = aijbij , ∀(i, j)  [m]× [n], or




a11b11 · · · a1nb1n
...

. . .
...

am1bm1 · · · amnbmn


 =




a11 · · · a1n
...

. . .
...

am1 · · · amn







b11 · · · b1n
...

. . .
...

bm1 · · · bmn


  (1.7)

Matrix Kronecker Products

Given two matrices, A  Rm×n and B  Rp×q, their Kronecker product is

C = A⊗B  Rmp×nq, where ckℓ = ai1j1bi2j2 , (1.8)

where the relationship between (k, ℓ), (i1, j1), (i2, j2) is as follows, given zero-indexed

input indices (i1, j1, i2, j2)  [m]⊗ [n]⊗ [p]⊗ [q],

k = pi1 + i2 and ℓ = qj1 + j2 (1.9)

Elementwise, the Kronecker product can be visualized as

16




a11b11 · · · a11b1q · · · · · · a1nb11 · · · a1nb1q
...

. . .
...

. . .
...

. . .
...

a11bp1 · · · a11bpq · · · · · · a1nbp1 · · · a1nbpq
...

...
...

. . .
...

...
...

am1b11 · · · am1b1q · · · · · · amnb11 · · · amnb1q
...

. . .
...

. . .
...

. . .
...

am1bp1 · · · am1bpq · · · · · · amnbp1 · · · amnbpq




=




a11 · · · a1n
...

. . .
...

am1 · · · amn







b11 · · · b1n
...

. . .
...

bm1 · · · bmn


 

One could also express the Kronecker product in the block format as:

A⊗B =




a11B · · · a1nB
...

. . .
...

am1B · · · amnB


 

Matrix Khatri-Rao Products

Given matrices A  Rm×p and B  Rn×p, the Khatri-Rao product computes the

columnwise Kronecker product with the columns of its inputs. We dene the Khatri-

Rao product as

C = A⊙B  Rmn×p, where ckℓ = aiℓbjℓ, (1.10)

17

and the relationship between the zero-indexed indices k  [mn] and (i, j)  [m]⊗ [n]

is k = ni+ j. In terms of the columns of A,B, we have that cℓ = aℓ⊗bℓ, ∀ℓ  [p], or

C =




 
a1 ⊗ b1 · · · ap ⊗ bp

 


 

1.2 Tensor Decompositions

Tensors suer from the infamous curse of dimensionality. This curse exists be-

cause as the number of the dimensions of a tensor grows, its storage cost and the

cost of operations involving it grows exponentially. This is because the number of

entries in a cubical d-way tensor is nd. Thus, there is often a need to compress these

large datasets. Tensor decompositions are techniques that decompose tensors into

smaller structured representations. Similar to most types of matrix decompositions,

we seek a set of matrices/tensors that can be multiplied together appropriately to

reconstruct the input. Matrix or tensor decompositions can be either exact or ap-

proximate. Most tensor decompositions can be viewed as higher-order generalizations

of matrix decompositions. There are several types of tensor decompositions, but in

this work we focus on the following two; the CP Decomposition and the Tucker De-

composition. Chapter 2 focuses on exact CP decompositions of a special type of

tensor. Chapter 3 focuses on tensor approximations using the Tucker Decomposition.

We now briey introduce these tensor decompositions.

18

1.2.1 Kruskal Tensors and the CP Decomposition

The Canonical Polyadic (CP) Decomposition compresses an input tensor into a Krus-

kal Tensor (KTensor), which is a sum of r rank-1 components. Each component is an

outer product of r vectors. We refer to r as the rank of the CP decomposition, though

this is technically true only when r is minimal. We can visualize this in the case of a

3-way tensor as shown in gure 1.9a. The vectors in each mode are concatenated as

columns to form a factor matrix as seen in gure 1.9b. It is crucial to note that the

order of the components is arbitrary.

T =

x1

y1

z1

+ · · · +

xr

yr

zr

(a) A 3 way Kruskal Tensor Diagram

x1
y1

z1
x2

y2

z2
. . .

. . .
. . .

xr−1
yr−1

zr−1
xr

yr

zr

X Y Z

(b) The vectors of the components of the Kruskal tensor come together to form factor

matrices

Figure 1.9: The CP Decomposition

Mathematically, given a tensor T  Rm×n×p and decomposition rank r  N, the

19

goal of an approximate CP Decomposition is to nd factor matrices X  Rm×r,Y 

Rn×r,Z  Rp×r such that

tijk ≈
r

ℓ=1

xiℓyjℓzkℓ, ∀(i, j, k)  [m]× [n]× [p], (1.11)

or alternatively

T ≈ JX,Y,ZK =
r

ℓ=1

xℓ ◦ yℓ ◦ zℓ (1.12)

The memory footprint of a KTensor is 3rn. The approximation gets more accurate

as r increases. This is the 2D matrix equivalent of having an n × n matrix approxi-

mation to be the sum of the outer product of two n× 1 vectors. Traditional methods

of computing the CP decomposition of a tensor through numerical oprimization are

gradient descent and Newtons method. The method used in this work is a variation

of the latter called damped Gauss-Newton (DGN), which is explained in section 2.1.3.

The goal of a CP Decomposition is to minimize the sum of squares errors with the

restraint of the user specied rank r as dened as

min ∥T − JX,Y,ZK∥2, subject to X  Rm×rY  Rn×rZ  Rp×r (1.13)

where T − JX,Y,ZK is dened element wise as follows

∥T − JX,Y,ZK∥2 ≡
m

i=1

n

j=1

p

k=1


tijk −

r

ℓ=1

xiℓyjℓzkℓ

2

 (1.14)

20

1.2.2 Tucker Tensors and The Tucker Decomposition

The Tucker Decomposition compresses an input tensor into a Tucker Tensor (TTen-

sor), which is a smaller core tensor with a factor matrix for each of its modes. To

reconstruct the approximation of the original tensor, each factor matrix is multiplied

with the core in its respective mode through a TTM. We can visualize this in the case

of a 3-way tensor as shown in gure 1.10.

T
=

A G B

C

Figure 1.10: A 3-way Tucker Tensor Diagram

If we consider a 3D tensor of size n3 with core of size r3 where r < n, then the

number of entries of a TTensor is 3rn+r3 which is less than the original memory foot-

print and much less if r ≪ n. The reconstruction of the original tensor is performed

using TTMs:

T ≈ JG;A,B,CK = G ×1 A×2 B×3 C (1.15)

and a single entry of the reconstruction can be expressed as

21

tijk =

q

α=1

r

β=1

s

γ=1

gαβγ · aiαbjβciγ , ∀(i, j, k)  [m]⊗ [n]⊗ [p] (1.16)

The traditional methods for computing a Tucker decomposition re Higher Order

Singular Value Decomposition (HOSVD) and Sequentially Truncated Higher Order

Singular Value Decomposition (STHOSVD). Though Higher Order Orthogonal Itera-

tion (HOOI) is not as traditional, it will be the focus of chapter 3. We describe these

algorithms in section 3.1.

22

Search For Fast Matrix Multiplication Algorithms

Section 1.1.4 introduced the original matrix multiplication algorithm of O(n3) cost,

yet alternative algorithms exist that achieve the same result with reduced computa-

tional complexity. A substantial amount of research has been dedicated to the de-

velopment of fast matrix multiplication algorithms, motivated by the fact that even

the most advanced known algorithms remain far from the theoretical lower bound of

O(n2 log n). Indeed, the fastest existing algorithms—operating in the range of O(n23)

to O(n24)—are not practical for most applications. As a result, research in this area

remains active, with continued eorts to discover more practically ecient algorithms.

Although the methods explored in this thesis do not set new benchmarks, they oer

meaningful contributions toward that goal.

To properly contextualize the role of CP Decomposition in this work, it is rst

necessary to review the foundational concepts behind fast matrix multiplication al-

gorithms. Section 2.1.1 begins by laying the groundwork with a introduction to fast

matrix multiplication algorithms. Section 2.1.2 summarizes how previous work ex-

23

plored the application of CP Decompositions to a specic tensor in the search for

ecient matrix multiplication algorithms. Our contributions begin in section 2.2

where we explore a structure of fast matrix multiplication algorithms called cyclic

invariance. We explain such structure in section 2.2.1 and we adapt the ideas of sec-

tion 2.1.2 to solely explore algorithms that have the cyclic invariance in section 2.2.2.

We summarize our ndings in section 2.2.3.

Finally, in section 2.3, we outline the future direction of this research. This sec-

tion is the result of a collaborative eort with the Department of Mathematics at

Wake Forest University. With the partnership of Dr. Frank Moore and Dr. Pratyush

Mishra, we investigate additional symmetries that fast matrix multiplication algo-

rithms might exhibit and examine whether any of the algorithms identied in this

work possess such characteristics.

2.1 Matrix Multiplication Algorithms

2.1.1 Fast Matrix Multiplication Algorithms

Recall from section 1.1.4 the way matrix multiplications are performed. In particular,

(1.5) demonstrates how to multiply two matrices A,B  R2×2. If we interpret the

values of A and B not as scalars but as submatrices, it becomes apparent that, we

can perform such matrix multiplication using a recursive algorithm like the one on

algorithm 1, which is given more compactly in gure 2.1.

24

Algorithm 1 Recursive Matrix Multiplication

function C = MatMul(A,B)
if dim(A) = dim(A) = 1 then

return A ·B
end if
Divide into quadrants: A =


A11 A12

A21 A22


B =


B11 B12

B21 B22



M1 = MatMul(A11,B11)
M2 = MatMul(A12,B21)
M3 = MatMul(A11,B12)
M4 = MatMul(A12,B22)
M5 = MatMul(A21,B21)
M6 = MatMul(A22,B12)
M7 = MatMul(A21,B12)
M8 = MatMul(A22,B22)

return C =


M1 +M2 M3 +M4

M5 +M6 M7 +M8



end function

M1 = A11 ·B11

M2 = A12 ·B21

M3 = A11 ·B12

M4 = A12 ·B22

M5 = A21 ·B11

M6 = A22 ·B21

M7 = A21 ·B12

M8 = A22 ·B22

C11 = M1 +M2

C12 = M3 +M4

C21 = M5 +M6

C22 = M7 +M8

Figure 2.1: Classic 2 by 2 Matrix Multiplication Algorithm

This algorithm involves 8 multiplications and 4 additions of matrices of size n2.

Therefore, the computational complexity is T (n) = 8T (n2) + O(n2) = O(nlog2 8) =

O(n3). This computational cost can be decreased by carefully manipulating our

25

M1 = (A11 +A22) · (B11 +B22)

M2 = (A12 +A22) ·B11

M3 = A11 · (B21 −B22)

M4 = A22 · (B12 −B11)

M5 = (A11 +A21) ·B22

M6 = (A12 −A11) · (B11 +B21)

M7 = (A21 −A22) · (B12 +B22)

C11 = M1 +M4 −M5 +M7

C12 = M3 +M5

C21 = M2 +M4

C22 = M1 −M2 +M3 +M6

Figure 2.2: Classic Strassens Algorithm

multiplications and additions in order to reduce the number of recursive calls. In

1969, Volker Strassen became the rst to develop an algorithm with cost less than

O(n3), which made way for fast matrix multiplication algorithms. His classic

algorithm, showcased in gure 2.2, involves 7 multiplications. The computational

complexity of Strassens algorithm is T (n) = 7T (n2)+O(n2) = O(nlog2 7) ≈ O(n281).

Strassens algorithm can be rearranged; we can modify the additions and multi-

plies to get a permuted version of his algorithm with the same number of multiplies

and additions. An example of these variations of Strassens algorithms can be seen

in 2.3. Notice how the two algorithms are the same, except that M3 became M6, M4

became M3, M6 became M7, and M7 became M4 and the additions in C changed

respectively. There are multiple ways one could permute Strassens classic algorithm

to obtain other valid fast matrix multiplication algorithms. Furthermore, there are

26

M1 = (A11 +A22) · (B11 +B22)

M2 = (A12 +A22) ·B11

M3 = A22 · (B12 −B11)

M4 = (A21 −A22) · (B12 +B22)

M5 = (A11 +A21) ·B22

M6 = A11 · (B21 −B22)

M7 = (A12 −A11) · (B11 +B21)

C11 = M1 +M3 +M4 −M5

C12 = M2 +M3

C21 = M5 +M6

C22 = M1 −M2 +M6 +M7

Figure 2.3: Permuted Strassens Algorithm

other types of transformations that can be applied to Strassens original algorithm to

obtain even more alternative algorithms (see section 2.3). One example is the algo-

rithm presented in gure 2.4, which can no longer be achieved by simply permuting

Strassens classic algorithm. Both algorithms presented in gures 2.3 and 2.4 will be

relevant in section 2.2 as they contain a special structure that is hard to visualize in

the classic algorithm of gure 2.2. The specic representations of the algorithms of

gures 2.3 and 2.4 were chosen because the above structure is easily visualizable in

these representations and they contain slighly dierent variations of the aforemen-

tioned structure.

This naturally leads to the question: how many such possibilities exist? We could

search for dierent solutions that all have the same number of multiplications by

performing either an exhaustive search or an optimization search on each parameter

27

M1 = A11 ·B11

M2 = (A12 +A22) · (B12 +B22)

M3 = (A22 −A21) · (B22 −B21)

M4 = (A21 −A12 −A22) · (B21 −B12 −B22)

M5 = (−A12) · (−B21)

M6 = (A11 −A12 +A21 −A22) · (−B12)

M7 = (−A21) · (B11 −B12 +B21 −B22)

C11 = M1 +M5

C12 = M4 −M3 +M5 −M6

C21 = M2 −M4 −M5 −M7

C22 = M2 +M3 −M4 −M5

Figure 2.4: Variant Strassens Algorithm

involved in matrix multiplication as seen in gure 2.5. If we are searching for a discrete

solution with only -1, 0, 1 as coecients then we have 384 possibilities, though not

all of these possibilities would be valid algotithms. We will see how we can decrease

this number later on to something much more feasible using the structure hinted

at in these algorithms. Before exploring non-exhaustive search strategies for these

algorithms, we introduce the central focus of this project.

2.1.2 The Matrix Multiplication Tensor

Central to this work is a specic tensor; the Matrix Multiplication Tensor. It enables

matrix multiplication to be represented in tensor form as illustrated in gure 2.6. To

carry out the multiplication of matrices A  Rm×n and B  Rn×p, we can form the

respective matrix multiplication tensor M  Rmn×np×mp through Algorithm 2.

28

M1 = (u
(1)
11 A11 + u

(1)
12 A12 + u

(1)
21 A21 + u

(1)
22 A22) · (v(1)11 B11 + v

(1)
12 B12 + v

(1)
21 B21 + v

(1)
22 B22)

M2 = (u
(2)
11 A11 + u

(2)
12 A12 + u

(2)
21 A21 + u

(2)
22 A22) · (v(2)11 B11 + v

(2)
12 B12 + v

(2)
21 B21 + v

(2)
22 B22)

M3 = (u
(3)
11 A11 + u

(3)
12 A12 + u

(3)
21 A21 + u

(3)
22 A22) · (v(3)11 B11 + v

(3)
12 B12 + v

(3)
21 B21 + v

(3)
22 B22)

M4 = (u
(4)
11 A11 + u

(4)
12 A12 + u

(4)
21 A21 + u

(4)
22 A22) · (v(4)11 B11 + v

(4)
12 B12 + v

(4)
21 B21 + v

(4)
22 B22)

M5 = (u
(5)
11 A11 + u

(5)
12 A12 + u

(5)
21 A21 + u

(5)
22 A22) · (v(5)11 B11 + v

(5)
12 B12 + v

(5)
21 B21 + v

(5)
22 B22)

M6 = (u
(6)
11 A11 + u

(6)
12 A12 + u

(6)
21 A21 + u

(6)
22 A22) · (v(6)11 B11 + v

(6)
12 B12 + v

(6)
21 B21 + v

(6)
22 B22)

M7 = (u
(7)
11 A11 + u

(7)
12 A12 + u

(7)
21 A21 + u

(7)
22 A22) · (v(7)11 B11 + v

(7)
12 B12 + v

(7)
21 B21 + v

(7)
22 B22)

C11 = w
(1)
11 M1 + w

(2)
11 M2 + w

(3)
11 M3 + w

(4)
11 M4 + w

(5)
11 M5 + w

(6)
11 M6 + w

(7)
11 M7

C12 = w
(1)
12 M1 + w

(2)
12 M2 + w

(3)
12 M3 + w

(4)
12 M4 + w

(5)
12 M5 + w

(6)
12 M6 + w

(7)
12 M7

C21 = w
(1)
21 M1 + w

(2)
21 M2 + w

(3)
21 M3 + w

(4)
21 M4 + w

(5)
21 M5 + w

(6)
21 M6 + w

(7)
21 M7

C22 = w
(1)
22 M1 + w

(2)
22 M2 + w

(3)
22 M3 + w

(4)
22 M4 + w

(5)
22 M5 + w

(6)
22 M6 + w

(7)
22 M7

Figure 2.5: Exhaustive Search of Fast MatMul Algorithms

Algorithm 2 Forming the Matrix Multiplication Tensor

function T = MatMul-Tensor(m,n, p)
T = zeros(mn, np,mp) ▷ Initialize Tensor
for i = 1 : m do

for i = 1 : m do
for i = 1 : m do

T (mj + i, nk + j, pi+ k) = 1
end for

end for
end for

end function

29

M

a b

=

c

Figure 2.6: Matrix Multiplication in Tensor Format, where a = vec(A), b = vec(B),

and c = vec(C⊺).

In order to perform matrix multiplication through the matrix multiplication ten-

sor, we vectorize A and B and perform TTMs in the rst and second mode respec-

tively. The output, in the third mode, is the vectorization of the output C = A · B

transposed (i.e. C⊺). Notation wise this is the same as

M×1 vec(A)×2 vec(B) = M×1




a11

a12

a21

a22


×2




b11

b12

b21

b22


 =




c11

c21

c12

c22


 = vec(CT) (2.1)

where aij = vecAij . This project is concerned only with square matrices, thus we

always assume A,B,C  Rn×n and M  Rn2×n2×n2
.

We now revisit the concept of tensor decompositions, specically the CP decom-

position. Recall from 1.2.1 that the decomposition compresses an input tensor into r

d-way outer product components. If we decompose the matrix multiplication tensor

using the CP Decomposition, there is a hidden fast matrix multiplication algorithm

embedded in the components of its CP decomposition. In fact, the number of com-

ponents r corresponds to the number of multiplications in the algorithm. As a result,

30

two implications arise. The rst implication is that given an algorithm, say one of the

384 for 2 × 2 algorithms with rank 7, we can form the KTensor of the corresponding

algorithm, namely M̂ and take the norm of the dierence from the original matrix

multiplication tensor. If ∥M− M̂∥ = 0, then the algorithm in the factor matrices of

M̂ is a valid fast matrix multiplication algorithm. Before continuing with the second

implication, we must understand how to visualize the hidden algorithm in the factor

matrices of a KTensor.

Figure 2.7 shows Strassens original algorithm with two representations, the one

we have seen before on the left and the KTensor representation in gure 2.7b. The

way to interpret the algorithm on the right, is that each horizontal lines separate the

factor matrices, therefore just like in gure 1.9a the factor matrices A,B and C are

separated by the horizontal lines, the columns of the factor matrices represent the

rank-one components. A careful examination reveals how the columns representing

Mℓ correspond to the representation on the right. If a 1 or -1 appear in the right

representation then they appear as Aij or −Aij respectively on the left.

The other implication is that we can decompose the matrix multiplication tensor

with specied CP rank (as in (1.13)) through an optimization algorithm to search for

fast matrix multiplication algorithms.

31

M1 = (A11 +A22) · (B11 +B22)

M2 = (A12 +A22) ·B11

M3 = A11 · (B21 −B22)

M4 = A22 · (B12 −B11)

M5 = (A11 +A21) ·B22

M6 = (A12 −A11) · (B11 +B21)

M7 = (A21 −A22) · (B12 +B22)

C11 = M1 +M4 −M5 +M7

C12 = M3 +M5

C21 = M2 +M4

C22 = M1 −M2 +M3 +M6

(a) Recursive Algorithm Format

M1 M2 M3 M4 M5 M6 M7

A11 1 0 1 0 1 −1 0

A12 0 1 0 0 0 1 0

A21 0 0 0 0 1 0 1

A22 1 1 0 1 0 0 −1

B11 1 1 0 −1 0 1 0

B12 0 0 0 1 0 0 1

B21 0 0 1 0 0 1 0

B22 1 0 −1 0 1 0 1

C11 1 0 0 1 −1 0 1

C21 0 0 1 0 1 0 0

C12 0 1 0 1 0 0 0

C22 1 −1 1 0 0 1 0

(b) KTensor Format

Figure 2.7: A comparison of classic Strassens algorithm in regular and KTensor

formats. The horizontal lines indicate the factor matrices of the KTensor

2.1.3 Damped Gauss Newton Optimization for CP Decompositions

To search for fast matrix multiplication algorithms, we employ numerical optimization

techniques to solve the CP decomposition problem formulated in (1.13). This subsec-

tion is dedicated to outlining and deriving the steps and tools required to construct

an algorithm tailored specically to this problem. As a starting point, we dene the

input to the optimization as the vectorization of the KTensor, given by:

v = vec







X

Y

Z





 =




vec(X)

vec(Y)

vec(Z)


  R3nr

32

Using v as the input to our unconstrained optimization problem seen in (1.14), we

obain the following representation of the same equation

min f(v) =
1

2
∥ϕ(v)∥2 : R3nr → R, (2.2)

where we dene the nonlinear function

ϕ(v) = vec (M− JX,Y,ZK) : R3nr → Rn3

 (2.3)

It is important to emphasize that JX,Y,ZK denotes the 3-way tensor constructed

from the factor matrices of the KTensor, which is obtained from v. Since our objective

is to nd exact solutions, it is advantageous to use an algorithm that converges rapidly

in the neighborhood of a solution to the optimization problem of (2.2). The classic

Newton algorithm is a natural choice due to its quadratic convergence. The search

direction in Newtons method is computed by solving Newtons equation

2f(v)dk = −f(v),

where 2f(v) is the Hessian, f(v) is the gradient, and dk is our search direction

dened as

dk = vec







X̄

Ȳ

Z̄





 =




vec(X̄)

vec(Ȳ)

vec(Z̄)


  R3nr

The use of Newtons method requires evaluating the Hessian matrix, 2f(v),

which can be computationally expensive and dicult to derive—especially given the

33

cyclic invariant structure discussed in section 2.2. As an alternative, the Gauss-

Newton method oers a practical approximation of the Hessian with J⊺J, where

J : Rn → Rn×m is the Jacobian of the function ϕ(v). The Gauss-Newton equation is

dened as

(J⊺J)dk = −f(v)

.

However, a limitation of the Gauss-Newton method is that the approximation

J⊺J is often singular. The damped Gauss-Newton (DGN) method adds a damping

parameter, λ, to enforce positive deniteness. Thus, the DGN equation is dened as

(J⊺J+ λI)dk = −f(v) (2.4)

The goal of the remainder of this section is to show the equations necessary to

implement the DGN for the CP decomposition (CP DGN) method. We omit the

details of the derivation of such equations as it goes beyond the scope of this work.

The interested reader is referred to [1]. We begin with the right-hand side of the DGN

equation. The gradient is

f = vec







∂f∂X
∂f∂Y
∂f∂Z





 =




∂f∂vec(X)

∂f∂vec(Y)

∂f∂vec(Z)


  R3n2r

where each subequation is dened as

34

∂f∂X = −M(1)(Z⊙Y) +X(Z⊺Z ∗Y⊺Y)  Rn2×r

∂f∂Y = −M(2)(Z⊙X) +Y(Z⊺Z ∗X⊺X)  Rn2×r

∂f∂Z = −M(3)(Y ⊙X) + Z(Y⊺Y ∗X⊺X)  Rn2×r

(2.5)

On the other hand, we have the Jacobian, which is dened as

J =

JA JB JC


 Rn3×3nr (2.6)

where

JX ≡ ∂ϕ∂vec(X) = (Z⊙Y)⊗ I  Rn3×nr

JY ≡ ∂ϕ∂vec(Y) = Π⊺
2(Z⊙X)⊗ I  Rn3×nr

JZ ≡ ∂ϕ∂vec(Z) = Π⊺
3(Y ⊙X)⊗ I  Rn3×nr

(2.7)

such thatΠk is the tensor perfect shue matrix ([1], Denition 2.24), such that vec(P)

= Πk vec(P(k)), and Π1 is not written explicitly because it is the identity matrix. We

consider fast application of J⊺J+ λI, rather than forming J or J⊺J explicitly; we use

the structure of these matrices to compute the matrix-vector product (J⊺J+ λI)dk

without computing any explicit Kronecker or Khatri-Rao products. From (2.6) we

have that the block structure of J⊺J is

J⊺J =




J⊺
XJX J⊺

XJY J⊺
XJZ

J⊺
YJX J⊺

YJY J⊺
YJZ

J⊺
ZJX J⊺

ZJY J⊺
ZJZ




By distributing the left-hand side of the DGN equation, we obtain J⊺Jdk + λIdk.

While the second term is trivial to derive, the rst term becomes

35

J⊺Jdk =




J⊺
XJXvec(X̄) + J⊺

XJYvec(Ȳ) + J⊺
XJZvec(Z̄)

J⊺
YJXvec(X̄) + J⊺

YJYvec(Ȳ) + J⊺
YJZvec(Z̄)

J⊺
ZJXvec(X̄) + J⊺

ZJYvec(Ȳ) + J⊺
ZJZvec(Z̄)


  (2.8)

With some careful algebra ([1], Proposition 13.1), it can be shown (2.8) leads to

J⊺Jdk =




vec(X̄(Y⊺Y ∗ Z⊺Z) +X(Ȳ⊺Y ∗ Z⊺Z) +X(Y⊺Y ∗ Z̄⊺Z))

vec(Y(X̄⊺X ∗ Z⊺Z) + Ȳ(X⊺X ∗ Z⊺Z) +Y(X⊺X ∗ Z̄⊺Z))

vec(Z(X̄⊺X ∗Y⊺Y) + Z(X⊺X ∗ Ȳ⊺Y) + Z̄(X⊺X ∗Y⊺Y))


  (2.9)

We now have all of the necssary tools to create the algorithm that searches for

fast matrix multiplication algorithms through the CP decomposition of the matrix

multiplication tensor. This algorithm is showcased in detail in algorithm 3. A couple

important observations must be made. First, note that we do not solve the DGN

equation equation (2.4) directly. Rather in line 11 we use a conjugate gradient iter-

ative algorithm to solve the DGN equation, which is the reason it is sucient to be

able to apply (J⊺J+ λI) to dk instead of computing the approximate Hessian of ϕ(v)

explicitly. Secondly, we update dk using backtracking line search using the Goldstein

Conditions, for details see ([1], B.3.1).

2.2 Cyclic Invariance

We can reduce our search space in our search for fast matrix multiplication algo-

rithms by levereging cyclic invariance. Cyclic invariance is an added structure in

36

Algorithm 3 Damped Gauss-Newton On The Matrix Multiplication Tensor

1 Input: Matrix Multiplication Tensor M,
2 CP Tensor Rank r,
3 Damping Parameter λ  R+,
4 Convergence Tolerance ϵ > 0
5 Output: CP Tensor K
6 function DGN(M, r,λ, ϵ)
7 Initialize K and Kprev to be a cell of length 3 of n2 × r matrices
8 for i = 1 : MaxIters do
9 f ←− 1

2
∥M−K∥2 ▷ Compute Function Value

10 f ←− [vec

∂f
∂X


vec


∂f
∂Y


vec


∂f
∂Z


]⊺ ▷ Compute Gradient

11 S ←− Solution to (J⊺J+ λI)K = −f ▷ Conjugate Gradient Iter. Alg.
12 while Goldstein Conditions Are Not Satised do
13 K ←− Kprev + αS
14 fnew ←− 1

2
∥M−K∥2

15 α ←− α2
16 end while
17 if f - fnew < ϵ then
18 break
19 end if
20 end for
21 end function

matrix multiplication algorithms that reduces the number of variables of the CP De-

composition optimization problem for the matrix multiplication tensor by a factor of

three.

2.2.1 Cyclic Invariant Matrix Multiplication Algorithms

Recall that we can permute Strassens agorithms to obtain variations. Some of these

variations can be cyclic invariant. Recall from section 2.1.1 that we introduced a vari-

ation of Strassens algorithm in gure 2.3. Figure 2.8 shows both Strassens original

algorithm on the left, and the permuted version in KTensor format in gure 2.8b. No-

tice how: (1) the permutation is given by simply moving the columns of the KTensor

37

(in unity) just the way it was described previously. M3 became M6 and so on, and (2)

the permuted Strassens algorithm on the right is composed of smaller submatrices

that appear throughout the main factor matrices of the KTensor (highlighted in col-

ors). The 4× 1 matrix in red is called the symmetric component, and we place it

at the beginning of all three factor matrices. We denote it as S. The remaining three

4× 2 submatrices are called the cyclic component, we denote them as U,V,W.

M1 M2 M3 M4 M5 M6 M7

A11 1 0 1 0 1 −1 0

A12 0 1 0 0 0 1 0

A21 0 0 0 0 1 0 1

A22 1 1 0 1 0 0 −1

B11 1 1 0 −1 0 1 0

B12 0 0 0 1 0 0 1

B21 0 0 1 0 0 1 0

B22 1 0 −1 0 1 0 1

C11 1 0 0 1 −1 0 1

C21 0 0 1 0 1 0 0

C12 0 1 0 1 0 0 0

C22 1 −1 1 0 0 1 0

(a) Classic Strassen’s Algoritm from g-

ure 2.2

in KTensor format

M1 M2 M3 M4 M5 M6 M7

A11 1 0 0 0 1 1 −1

A12 0 1 0 0 0 0 1

A21 0 0 0 1 1 0 0

A22 1 1 1 −1 0 0 0

B11 1 1 −1 0 0 0 1

B12 0 0 1 1 0 0 0

B21 0 0 0 0 0 1 1

B22 1 0 0 1 1 −1 0

C11 1 0 1 1 −1 0 0

C21 0 0 0 0 1 1 0

C12 0 1 1 0 0 0 0

C22 1 −1 0 0 0 1 1

(b) Permuted Strassen’s Algoritm from g-

ure 2.3

in KTensor format

Figure 2.8: Cyclic Invariance in Strassens Algorithm

Because they are always submatrices of the factor matrices, both the symmetric

and the cyclic components have the same number of rows as the factor matrices,

38

namely n. However, they can have a dierent number of columns. We denote the

number of columns of the symmetric component as rs and the number of columns of

the cyclic component as rc. Since r is the rank of the CP Decomposition, we have

that rs + 3rc = r. Because of this, given a matrix multiplication tensor of n × n

matrices, and a given rank r, there are multiple choices for rc, which in turn dene

the value of rs since rs = r − 3rc.

M1 M2 M3 M4 M5 M6 M7

A11 1 0 0 0 1 1 −1

A12 0 1 0 0 0 0 1

A21 0 0 0 1 1 0 0

A22 1 1 1 −1 0 0 0

B11 1 1 −1 0 0 0 1

B12 0 0 1 1 0 0 0

B21 0 0 0 0 0 1 1

B22 1 0 0 1 1 −1 0

C11 1 0 1 1 −1 0 0

C21 0 0 0 0 1 1 0

C12 0 1 1 0 0 0 0

C22 1 −1 0 0 0 1 1

(a) Permuted Strassen’s Algoritm gure 2.3

in KTensor format

M1 M2 M3 M4 M5 M6 M7

A11 1 0 0 0 0 1 0

A12 0 0 −1 1 0 1 −1

A21 0 1 0 −1 −1 −1 0

A22 0 1 1 −1 0 −1 0

B11 1 0 0 0 0 0 1

B12 0 0 −1 1 −1 0 1

B21 0 1 0 −1 0 −1 −1

B22 0 1 1 −1 0 0 −1

C11 1 0 0 0 1 0 0

C21 0 0 −1 1 1 −1 0

C12 0 1 0 −1 −1 0 −1

C22 0 1 1 −1 −1 0 0

(b) Variant Strassen’s Algoritm gure 2.4

in KTensor format

Figure 2.9: Dierent types of Cyclic Invariance in Strassens Algorithm

For rank 7 algorithms of 2× 2 matrices, we have two options [rs = 1, rc = 2] and

[rs = 4, rc = 1]. We have seen versions of both of these selected values before in

section 2.1.1. The algorithm found in gure 2.3 is a cyclic invariant algorithm with

39

rs = 1, rc = 2, and similarly the one in gure 2.4 has rs = 4, rc = 1. Figure 2.9

shows these algorithms in their KTensor format where their cyclic invariant structure

is easily visualizable.

We can visualize imposing the cyclic invariant structure on the factor matrices of

the KTensor as transforming gure 1.9b into gure 2.10, and transforming gure 1.9a

into gure 2.11.

SY W U V n2

SX U V W n2

SZ

rs

V

rc

W

rc

r = rs + 3rc

U

rc

n2

Figure 2.10: Cyclic Invariance in a KTensor

40

S1

S1

S1

+ · · · +

Srs

Srs

Srs

+

U1

W1

V1

+ · · · +

Urc

Wrc

Vrc

+

V1

U1

W1

+ · · · +

Vrc

Urc

Wrc

+

W1

V1

U1

+ · · · +

Wrc

Vrc

Urc

Figure 2.11: CP Decomposition Diagram with Cyclic Invariant Structure

2.2.2 Adapting CP DGN to Cyclic Invariance

The goal of this section is to adapt algorithm 3 to search for algorithms with cyclic in-

variant structure. The process of solving the DGN equation (J⊺J+ λI)dk = −f(v)

stays the same, but now we adapt v. To exploit the cyclic invariance structure on a

KTensor with matrices X,Y, and Z we impose that these are built of smaller sub-

matrices S,U,V, and W as in

X = [S U V W]

Y = [S W U V]

Z = [S V W U]

(2.10)

41

Therefore, instead of searching for matrices X,Y, and Z, we are solely searching

for matrices S,U,V, and W which are known to be the building blocks of X,Y,Z.

Essentially, we decreased the number of variables of our optimization problem by a

factor of three. If we were to do an exhaustive search like in gure 2.5, we decrease

from 384 possibilities to 328 for the 2 by 2 case with 7 multiplications. Our input v is

now dened as

v = vec







S

U

V

W





 =




vec(S)

vec(U)

vec(V)

vec(W)


  Rnr,

Similarly, the search direction dk becomes

dk = vec







S̄

Ū

V̄

W̄





 =




vec(S̄)

vec(Ū)

vec(V̄)

vec(W̄)


  Rnr

The function value f(v) to this problem remains the same, we are solely adapting

(1.14) to be

∥T − JS,S,SK− JU,V,WK− JW,U,VK− JV,W,UK∥2, (2.11)

which is equivalent to

n

i=1

n

j=1

n

k=1


mijk −

rs

q

siqsjqskq −
rc

l

(uilvjlwkl + wilujlvkl + vilwjlukl)

2

 (2.12)

By decreasing the number of variables, we have increase the complexity of the

42

equations for the gradient and Jacobian. The equations for the gradient become

f =




vec(∂f∂S)

vec(∂f∂U)

vec(∂f∂V)

vec(∂f∂W)


  Rnr (2.13)

where each partial derivative is dened as:

∂f∂S = 3·

S(S⊺S∗S⊺S)+U(V⊺S∗W⊺S)+V(U⊺S∗W⊺S)+W(U⊺S∗V⊺S)

−(X(1)+X(2)+X(3))(S⊙S)


∂f∂U = 3·

S(S⊺V∗S⊺W)+U(V⊺V∗W⊺W)+V(W⊺V∗U⊺W)+W(U⊺V∗V⊺W)



−X(1)(V⊙W)−X(2)(W⊙V)−X(3)(V⊙W)

∂f∂V = 3·

S(S⊺U∗S⊺W)+U(W⊺U∗V⊺W)+V(U⊺U∗W⊺W)+W(V⊺U∗U⊺W)



−X(1)(W⊙U)−X(2)(U⊙W)−X(3)(W⊙U)

∂f∂W = 3·

S(S⊺U∗S⊺V)+U(V⊺U∗W⊺V)+V(W⊺U∗U⊺V)+W(U⊺U∗V⊺V)



−X(1)(U⊙V)−X(2)(V⊙U)−X(3)(U⊙V)

(2.14)

Similarly, our Jacobian becomes

J =

JS JU JV JW


 Rn3×nr (2.15)

where

JS = (S⊙ S)⊗ I+Π⊺
2 · (S⊙ S)⊗ I+Π⊺

3 · (S⊙ S)⊗ I

JU = (V ⊙W)⊗ I+Π⊺
2 · (W ⊙V)⊗ I+Π⊺

3 · (V ⊙W)⊗ I

JV = (W ⊙U)⊗ I+Π⊺
2 · (U⊙W)⊗ I+Π⊺

3 · (W ⊙U)⊗ I

JV = (U⊙V)⊗ I+Π⊺
2 · (V ⊙U)⊗ I+Π⊺

3 · (U⊙V)⊗ I

(2.16)

However, recall that we are not interested in the explicit expressions for the Ja-

cobian, but rather how to apply (J⊺J+ λI)dk to our search direction dk. Just as in

section 2.1.2, we ignore the expression for λIdk as it is trivial.

43

J⊺Jdk =




J⊺
SJS J⊺

SJU J⊺
SJV J⊺

SJW

J⊺
UJS J⊺

UJU J⊺
UJV J⊺

UJW

J⊺
VJS J⊺

VJU J⊺
VJV J⊺

VJW

J⊺
WJS J⊺

WJU J⊺
WJV J⊺

WJW







vec(S̄)

vec(Ū)

vec(V̄)

vec(W̄)


 (2.17)

The equations for each entry of the above matrix-vector product are described

below:

J⊺
SJSvec(S̄) = 3·vec


S̄(S⊺S)∗(S⊺S)+2·S(S̄⊺S)∗(S⊺S)



J⊺
SJUvec(Ū) = 3·vec


Ū(V⊺S)∗(W⊺S)+V(Ū⊺S)∗(W⊺S)+W(Ū⊺S)∗(V⊺S)



J⊺
SJVvec(V̄) = 3·vec


V̄(U⊺S)∗(W⊺S)+U(V̄⊺S)∗(W⊺S)+W(V̄⊺S)∗(U⊺S)



J⊺
SJWvec(W̄) = 3·vec


W̄(U⊺S)∗(V⊺S)+U(W̄⊺S)∗(V⊺S)+V(W̄⊺S)∗(U⊺S)



J⊺
UJSvec(S̄) = 3·vec


S̄(S⊺V)∗(S⊺W)+S


(S̄⊺W)∗(S⊺V)+(S̄⊺V)∗(S⊺W)



J⊺
UJUvec(Ū) = 3·vec


Ū(V⊺V)∗(W⊺W)+V(Ū⊺W)∗(W⊺V)+W(Ū⊺V)∗(V⊺W)



J⊺
UJVvec(V̄) = 3·vec


V̄(W⊺V)∗(U⊺W)+W(V̄⊺W)∗(U⊺V)+U(V̄⊺V)∗(W⊺W)



J⊺
UJWvec(W̄) = 3·vec


W̄(U⊺V)∗(V⊺W)+U(W̄⊺W)∗(V⊺V)+V(W̄⊺V)∗(U⊺W)



J⊺
VJSvec(S̄) = 3·vec


S̄(S⊺U)∗(S⊺W)+S


(S̄⊺U)∗(S⊺W)+(S̄⊺W)∗(S⊺U)



J⊺
VJUvec(Ū) = 3·vec


Ū(V⊺W)∗(W⊺U)+V(Ū⊺U)∗(W⊺W)+W(Ū⊺W)∗(V⊺U)



J⊺
VJVvec(V̄) = 3·vec


V̄(W⊺W)∗(U⊺U)+W(V̄⊺U)∗(U⊺W)+U(V̄⊺W)∗(W⊺U)



J⊺
VJWvec(W̄) = 3·vec


W̄(U⊺W)∗(V⊺U)+U(W̄⊺U)∗(V⊺W)+V(W̄⊺W)∗(U⊺U)



J⊺
WJSvec(S̄) = 3·vec


S̄(S⊺U)∗(S⊺V)+S


(S̄⊺U)∗(S⊺V)+(S̄⊺V)∗(S⊺U)



J⊺
WJUvec(Ū) = 3·vec


Ū(V⊺U)∗(W⊺V)+V(Ū⊺V)∗(W⊺U)+W(Ū⊺U)∗(V⊺V)



J⊺
WJVvec(V̄) = 3·vec


V̄(W⊺W)∗(U⊺V)+W(V̄⊺V)∗(U⊺U)+U(V̄⊺U)∗(W⊺V)



J⊺
WJWvec(W̄) = 3·vec


W̄(U⊺U)∗(V⊺V)+U(W̄⊺V)∗(V⊺U)+V(W̄⊺U)∗(U⊺V)




With all of these modications, we introduce a modied version of the CP DGN

algorithm that searches for fast matrix multiplication algorithms with cyclic invariant

structure. Details can be found in algorithm 4.

44

Algorithm 4 Cyclic Invariant CP Damped Gauss-Newton

1 Input: Matrix Multiplication Tensor M,
2 CP Tensor Rank r,
3 Damping Parameter λ  R,
4 Convergence Tolerance ϵ > 0
5 Output: CP Tensor K
6 function DGN(M, r,λ, ϵ)
7 Initialize K and K prev to be a cell of length 4 with the rst entry being of

n2 × rs and the remaining three n2 × rc matrices
8 for i = 1 : MaxIters do
9 f ←− 1

2
∥M−K∥2 ▷ Solution to equation (2.12)

10 f ←− [vec

∂f
∂S


vec


∂f
∂U


vec


∂f
∂V


vec


∂f
∂W


]T

11 S ←− Solution to (JTJ+ λI)K = −f
12 while Goldstein Conditions Are Not Satised do
13 K ←− K prev + αS
14 f new ←− Compute Function Value
15 α ←− α2
16 end while
17 if f - f new < ϵ then
18 break
19 end if
20 end for
21 end function

2.2.3 Heuristics and Our Findings

This section describes the heuristics of the process of searching for fast matrix multipli-

cation algorithms as well as a summary of the identied algorithms using algorithm 4

for selected values of n, r, rs, and rc.

Given n and r we search for all possible combinations of rs and rc. For each

combination, we perform a CP decompositon using algorithm 4 with thousands of

random starts to initialize initial KTensor in line 7. We perform our experiments on

a server so that we can take advantage of multiple processors on these random starts.

45

After we obtain an approximation of the matrix multiplication tensor (i.e. after a full

passing of algorithm 4), we run through CI CP DGN again, but instead of a random

start, we use the output of the previous passing as a starting point. However, in

between iterations, we modify the solution of the previous output. First, we sparsify

our solution by applying a transformation that maintains the approximation but

introduces some zeroes into a single component (see section 2.3). This transformation

tends to also introduce more zeroes in other components. Secondly, we also force the

coecients to be between -1 and 1 before initializing further rounds of CI CP DGN.

We save any solution, at any point, that results in an exact decomposition of the

matrix multiplication tensor. With our testing scheme being dened, we discuss our

ndings.

For n = 2, it is well-established that no solutions exist for r < 7. Nonetheless,

for r = 7 it is noteworthy that several solutions were found for rs = 1 and rs = 4,

although many of these are equivalent up to permutations. For the case of n = 3, the

best-known algorithm corresponds to r = 23, while the theoretical lower bound stands

at r = 19. We explored values r = 22, 21, 20, and 19, but our algorithm did not yield

any novel results at these ranks. At r = 23, all three rs values identied corresponded

to previously known solutions. We were also unable to nd new algorithms for rs =

8, 14, 17, and 20.

Our rst novel results emerge in the case of n = 4 algorithms. While the values

46

n = 2, r = 4 S n = 3, r = 23 S n = 4, r = 49 S n = 5 S

rs = 1, rc = 2 1000s rs = 2, rc = 7 100s rs = 1, rc = 16 6 r = 109 2

rs = 4, rc = 1 1000s rs = 5, rc = 6 100s rs = 4, rc = 15 0 r = 93 0

rs = 8, rc = 5 - rs = 7, rc = 14 - r = 91 0

rs = 11, rc = 4 100s rs = 10, rc = 13 - · · · -

rs = 14, rc = 3 - rs = 13, rc = 12 2

rs = 17, rc = 2 - rs = 16, rc = 11 32

rs = 20, rc = 1 - · · · -

Table 2.1: A Summary of our found Algorithms discovered using CI CP DGN. S

corresponds to the number of solutions found given using the specied symmetric

and cyclic ranks. An approximation is given for n = 2 and n = 3 as too many

algorithms were found and there is not a record of exactly how many were found.

Details are omitted from n = 5 as an extensive search is yet to be performed.

rs = 1 and rs = 16 correspond to known solutions—being equivalent to applying

Strassens algorithm twice—our method successfully identied a previously unkown

fast matrix multiplication algorithm with rs = 13. Unfortunately, despite the exis-

tence of algorithms with rs = 4, our approach did not yield any such results, which is

likely due to limitations in the search process which could mean further explorations

could reveal an algorithm in this case. No algorithms were found for rs = 7, 10, or

any rs ≥ 19. Our exploration for n = 5 was limited, and a more rigorous search

remains to be conducted.

47

2.3 Further Structure in Matrix Multiplication Algorithms

Throughout this work, we have explored the cyclic invariance structure in fast matrix

multiplication algorithms and how it reduces the number of variables in CP decom-

position of the matrix multiplication tensor [2, 3, 4]. There are two other types of

symmetries not explored in this work, namely the the GL3
n and the transpose sym-

metries.

We can express the cyclic transformation as a map on a CP decomposition of the

matrix multiplication tensor:

JX,Y,ZK → JZ,X,YK (2.18)

The output of a cyclic transformation is always also a valid matrix multiplication

algorithm; if the transformation produces the same components, just in a dierent

order, then we say that the algorithm is cyclic invariant. Similarly, we dene the

transpose transformation as the following action on a CP decomposition

JX,Y,ZK → JΠn×nY,Πn×nX,Πn×nZK, (2.19)

where Πn×n is the (matrix) perfect shue permuation matrix that satises

Πn×nvec(M) = vec(M⊺) [5]. As before, this transformation also results in another

valid matrix multiplication algorithm. This property exists because AB = C implies

A⊺B⊺ = C⊺. Lastly, the GL3
n action is dened as an action that tranforms a CP

48

decomposition

JX,Y,ZK → J(Q−⊺ ⊗P)X, (R−⊺ ⊗Q)Y, (P−⊺ ⊗R)ZK, (2.20)

where P,Q, and R are any n×n nonsingular matrices. The reason this also results in

another valid algorithm is because AB = C implies (PAQ)(Q−1BR) = PCR. The

special case where Q = P = R is called the diagonal action, which maintains the

cyclic invariance structure of an algorithm if it exists. If the output of a transpose

action or the GL3
n action is the same as the input, possibly with the components

reordered, then we say the algorithm is invariant to that action.

We refer to the set of transformations that can map a given tensor decomposition

to itself (up to permutations of the components of the decomposition) as the symmetry

group of the algorithm. Currently, we are studying the algorithms for n = 4 r = 49

case that we have found. Our goal is to identify the symmetry groups of these

algorithms, to nd any additional invariance ((2.19) or (2.20)) in these algorithms.

Prior work has done this manually, but we are attempting to automate this process.

Future work is to introduce the corresponding structures while searching for these

algorithms. For example, imposing the cyclic invariant structure in the search for

fast matrix multiplication algorithms reduced the number of variables by a factor of

three. Similarly, imposing the transpose structure reduces the number of variables by

a factor of 2. Imposing both simultaneously reduces it by a factor of 6.

49

Parallel Rank-Adaptive HOOI

Previous work has shown that the Tucker decomposition is particularly eective at

compressing datasets arising from scientic simulations occurring in two or three

spatial dimensions and through time, in part because algorithms for computing the

Tucker decomposition can scale to high performance computing platforms (see, e.g.,

[6, 7, 8, 9, 10, 11, 12]). When used as a technique for compression, the Tucker format

has an advantage that subtensors can be eciently decompressed without reconstruct-

ing the full tensor, which allows for fast visualization of particular time steps, spatial

regions, or quantities of interest. The Tucker decomposition is a generalization of the

truncated singular value decomposition (SVD) that consists of a core tensor, with as

many modes as the input, and a set of factor matrices. The dimensions of the core

tensor are known as the Tucker ranks, and like the truncated SVD, smaller ranks yield

higher compression but larger error, in contrast, larger ranks yield lower compression

but smaller error. This is known as the compression-accuracy trade-o as seen in

Figure 3.1.

50

Compression
Accuracy

Figure 3.1: The Tensor Decomposition Trade-O

To specify compression beforehand, we constrain the size of the core tensor G. In

the 3-way case, we specify the array of ranks r = [q, r, s], or in the d-way case, r =

[r1,    , rd]. Because we set the ranks beforehand, this is called the rank-specied

formulation, and with it, we also know the compression ratio beforehand which for

the 3-way case is

mnp

qrs+ qm+ nr + sp
≈ mnp

qrs
 (3.1)

In this formulation, we cannot determine in advance what the accuracy will be. On

the other hand, to specify accuracy beforehand, we constrain the maximum relative

error threshold ϵ of the Tucker approximation. The 3-way case of the relative error

can is dened as

∥X − JG;U,V,WK∥
∥X ∥ ≤ ϵ (3.2)

This is called the error-specied formulation, where we cannot determine in advance

what the compression will be.

As we describe in section 3.1, a direct algorithm known as Sequentially Trun-

cated Higher Order SVD (ST-HOSVD) achieves quasi-optimal accuracy among de-

compositions of specied ranks, and it can adaptively determine ranks to solve the

51

error-specied formulation [13, 14]. The Higher Order Orthogonal Iteration (HOOI)

algorithm is an iterative method that solves the rank-specied formulation of the

problem [15, 16, 17]. Conventional wisdom has held that because ST-HOSVD solves

the rank-specied problem to within a small factor of the optimal solution, HOOI is

useful only to rene ST-HOSVDs solution and is typically unnecessary [18, 9, 19].

Based on the observations that (1) a single iteration of HOOI is computationally

cheaper than ST-HOSVD, particularly when the compression ratio is high, and (2)

when initialized randomly, HOOI tends to converge to a solution as accurate as that

of ST-HOSVD in as few as one or two iterations, the goal of this work is to evaluate

the scalability of HOOI to large tensor datasets and compare its performance with

state-of-the-art implementations of ST-HOSVD.

One of the main limitations of HOOI is that it solves the rank-specied formula-

tion of the Tucker approximation problem, but it does not solve the error-specied

formulation. In section 3.1.5, we propose a rank-adaptive variant of HOOI that does

solve the error-specied formulation. Our approach is based on incrementally expand-

ing the Tucker ranks over HOOI iterations in order to satisfy the error threshold and

then, once it is satised, truncating the ranks to maximize compression. We exploit

fast computation of the approximation error of a given Tucker approximation and all

its leading subtensors to determine the best truncation. Thus, prior knowledge of the

output ranks is no longer required, but the choice of initial ranks aects the number

52

of HOOI iterations performed.

TuckerMPI is a C++/MPI library that implements ST-HOSVD for large dense

tensors [9]. We build our parallelization of HOOI on TuckerMPI, leveraging the exist-

ing functionality for the main computational kernels required of both ST-HOSVD and

HOOI, including the TTM computation and algorithms for computing the SVD. The

eciency and scalability of HOOI is largely determined by those of the TTM and SVD

kernels. We apply two key optimizations, one for each kernel, in order to make our

rank-adaptive parallel HOOI algorithm more ecient. To reduce the computational

costs of the TTM kernel, we use memoization to avoid recomputation of individual

TTMs that occur across subiterations of HOOI; see section 3.1.3. To reduce costs

and expose better parallelism of SVD computations, we use subspace iteration within

HOOI subiterations. While subspace iteration computes only an approximation to

the leading left singular vectors, we show that one subspace iteration is sucient to

obtain the desired accuracy across the full HOOI iteration. Implementation of sub-

space iteration requires new parallel computational kernels in TuckerMPI, which we

describe in section 3.1.4.

In section 3.3, we evaluate the eciency and scalability of HOOI and compare it

to TuckerMPIs ST-HOSVD. We consider synthetic test data to show how the number

of modes and the compression ratios aect performance, and we demonstrate the im-

pact of our computational optimizations in dierent scenarios for the rank-specied

53

approximation problem. We also consider three real datasets generated from sci-

entic simulation of uid ow and combustion to test the rank-adaptivity of our

algorithm. The experimental results demonstrate that HOOI generally scales as well

as ST-HOSVD. In cases of large tensor dimension, ST-HOSVD becomes bottlenecked

by a sequential SVD-related computation, and HOOI scales signicantly better than

ST-HOSVD at high core counts. We show that HOOI benets from the reduction of

computational cost, roughly proportional to the compression ratio in a single tensor

dimension, compared to ST-HOSVD, but that it can suer from lower local kernel

eciency as a result. For scenarios of high compression ratio and initial ranks that are

overestimates of the output ranks, we observe that HOOI achieves Tucker approxi-

mations faster than ST-HOSVD, and in many cases, produces Tucker decompositions

with better compression ratio.

3.1 Tucker Algorithms

Recall from Section 1.2.2 that a Tucker decomposition of a tensor X  Rn1×···×nd

approximates X as a product of a core tensor G  Rr1···rd and factor matrices Uk 

Rnk×rk∀k  [d] where X ≈ X̂ = G ×1 U1 · · · × Ud. The optimal rank-r Tucker

decomposition of X can be expressed as a solution to the rank-specied optimization

problem

54

min ∥X − (G ×1 U1 · · · ×Ud)∥

subject to G  Rr1×···×rd ,Uk  Rnk×rk ∀k  [d]

(3.3)

Alternatively, the error-specied formulation of the Tucker approximation problem

is given as

min

d

j=1

rj +

d

j=1

njrj

subject to G  Rr1×···rd ,Uk  Rnk×rk∀k  [d]

and ∥X − (G ×1 U1 · · · ×Ud)∥ ≤ ϵ∥X∥

(3.4)

3.1.1 ST-HOSVD

We start with the state-of-the art algorithm that is capable of performing both rank-

specied and error-specied formulations. Algorithm 5 showcases the d-way construc-

tion of the ST-HOSVD algorithm. This method approximately solves either (3.3) or

(3.4) by unfolding the kth mode of the input tensor, computing its left leading singu-

lar vectors (LLSV), and then performing a TTM with the result to truncate the kth

mode of rank rk. Once all factor matrices have been computed, the truncated tensor

has rank r.

A relative error error of ϵ can be achieved by selecting rk in the LLSV computation

such that
nk

i=rk+1 σ
2
i ≤ ϵ2∥X ∥2d, where σi is the i

th largest singular value of the kth

55

unfolding, see [1] for more details. There are several algorithms one could choose

in line 8 to compute Uk. We assume that such computation is performed via the

eigenvalue decomposition (EVD) of the Gram matrix G(k)G
⊺
(k) as seen in algorithm 6.

Algorithm 5 ST-HOSVD

1 Input: Tensor X  Rn1×···×nd

2 Ranks r = r1,    , rd OR relative error tolerance ϵ > 0
3 Output: TTensor T of ranks r with T ≈ X OR ERR ≡ X − T  ≤ ϵX 
4 function ST-HOSVD(X , r or ϵ)
5 if ϵ is dened then ϵ̄ ← (ϵ

√
d) · X 

6 G ← X
7 for k = 1,    , d do
8 [Uk, ϵk] ← LLSV(G(k), rk or ϵ̄) ▷ rk leading left sing. vectors of residual
9 G ← G×kU

⊺
k ▷ compress in mode k

10 end for

11 ERR ←


d

k=1

ϵ2k ▷ equivalent to X − T 

12 return [G, U1:d, ERR] ▷ T ≡ G;U1:d
13 end function

Algorithm 6 LLSV

1 function U = LLSV(Y, r or ϵ)
2 S = Y ·Y⊺

3 [U,Λ] = eig(S)
4 return U(:, 1 : r)
5 end function

3.1.2 Classic HOOI

The details of the HOOI algorithm are given in algorithm 7. HOOI is an alternative

method for solving the rank-specied formulation of the Tucker approximation prob-

lem [15, 16, 17]. It is a block coordinate descent method and so it requires initial

56

factor matrices. Historically, the output factor matrices of ST-HOSVD have been

used as input factor matrices for the HOOI algorithm, which is used simply to rene

the approximation. However, random factor matrices can be used and generally no

more than two iterations are required to get a good approximation. Often, only one

iteration is enough to get a decent one.

HOOI iteratively updates each factor matrix by performing a TTM with all but

the kth factor matrix to obtain an intermediate tensor Y . The kthfactor matrix is

computed as the LLSV of Y(k). The core tensor G can be computed once, at the end,

or at the end of every iteration in order to computate a per-iteration approximation

error. We introduce three optimizations for the HOOI algorithm in an attempt to

make it more competitive against ST-HOSVD.

Algorithm 7 HOOI

Input: Tensor X  Rn1×···×nd

Either Ranks r = r1,    , rd
Maximum Number of Iterations

Output: TTensor T of ranks r with T ≈ X
function HOOI(X , r or ϵ)

Initialize factor matrices U1:d randomly
G ← X
for Maximum Number of Iterations do

for k = 1,    , d do
Y = X ×1 U

⊺
1 ×2 · · · ×k−1 U

⊺
k−1 ×k+1 U

⊺
k+1 ×k+2 · · · ×d U

⊺
d

Uk ← LLSV(Y(k), rk)
end for

end for
G ← Y ×d U

⊺
d ▷ update core

return [G, U1:d] ▷ T ≡ G;U1:d
end function

57

3.1.3 HOOI’s Dimension Trees Optimization

Adapting ranks in each HOOI iteration is a low order cost, however, the cost of

TTMs is a factor of d more expensive than in ST-HOSVD. We can reduce the cost

of TTMs by avoiding redundant computations. Notice that for k = 1 in algorithm 7

the following multi-TTM is computed Y = X ×2 U
⊺
2 ×3 U

⊺
3 · · · ×d U

⊺
d. At k = 2 the

multi-TTM is Y = X ×1 U
⊺
1 ×3 U

⊺
3 · · · ×d U

⊺
d. By comparing the two multi-TTMs we

can see that d− 2 TTMs are the same (namely 3 to d). So we can reuse results from

one multi-TTM to the next by memoizing intermediate results. This idea, organized

using so-called dimension trees, was rst used in the context of CP decompositions

[20] and has been applied to Tucker computations as well [21, 22]. Section 3.1.3 shows

an example dimension tree as we implement them for an order-6 tensor where each

node represents the set of modes in which a TTM has not been performed. At the

root of the tree, no TTMs have been performed, so the tensor is X . Each notch in

an edge of the tree represents a TTM in the labeled mode. At each leaf node, TTMs

in all modes but one have been performed, so we update the factor matrix in that

mode by performing LLSV. The core tensor G is updated at the last leaf node by

perform a TTM between the (memoized) intermediate tensor and the factor matrix

corresponding to the last leaf node. Algorithm 8 shows the HOOI iteration using

dimension tree memoization implemented recursively.

58

1, 2, 3, 4, 5, 6

1, 2, 3

1 2, 3

2 3

4, 5, 6

4 5, 6

5 6

6

5

4

1

2

3

3

2
1

6

5
4

3 2 6 5

Figure 3.2: Illustration of multi-TTM memoization for an order-6 tensor. Each node

in the tree shows the set of modes in which multiplication has not been performed.

Each notch in an edge is a TTM in the labeled mode. Factor matrices are computed

at each leaf node in the mode shown. G is updated in the last leaf node.

Algorithm 8 Recursive HOOI iteration via dimension trees

1 function [G, Uk] =HOOI-DT(X , Uk,m, r)
2 if length(m) = 1 then
3 Um = LLSV(X(m),Um, rm)
4 if m = d then
5 G = X ×d U

⊺
m

6 end if
7 else
8 Partition m = [µ, η]
9 X = X×k∈µU

⊺
k

10 [G, Uk] = HOSI-DT(X , Uk, η, r)
11 X = X×k∈ηU

⊺
k

12 [G, Uk] = HOSI-DT(X , Uk, µ, r)
13 end if
14 end function

59

3.1.4 HOOI’s Subspace Iteration Optimization

So far, we have assumed that the LLSVs of a matrixA are obtained as the eigenvectors

of the Gram matrix, AA⊺. The next algorithmic improvement we introduce is to

compute the leading left singular vectors by using subspace iteration. Algorithm 9

shows a single subspace iteration, but the computations could be repeated to improve

accuracy.

Algorithm 9 LLSV via Subspace Iteration

1 function Q = LLSV(A,U, r)
2 G = U⊺A
3 Z = AG⊺

4 [Q,∼,∼] = QRCP(Z)
5 end function

We note that the input matrix A is Y(k) from algorithm 7 or X(m) from algo-

rithm 8, which is the result of an all-but-one multi-TTM, and the input matrix U is

the factor matrix from the previous HOOI iteration. This implies that the tempo-

rary matrix G in algorithm 9 is an unfolding of the core tensor corresponding to the

current set of factor matrices. That is, the matrix multiplication in line 2 is a TTM,

which we implement using existing TuckerMPI subroutines. The multiplication in line

3 is a tensor contraction in all modes but one between the core tensor and the result

of an all-but-one multi-TTM, which is not implemented in TuckerMPI. Our parallel

algorithm mimics the computation of the Gram matrix of a tensor unfolding, but it is

a nonsymmetric operation and has dierent costs. Finally, we perform QR with col-

60

T
≈

A G B

C

Figure 3.3: Adaptive HOOI

umn pivoting in line 4 to orthonormalize the subspace iteration result and also order

the columns to aid in core analysis, which is discussed in section 3.1.5. We choose

to do only a single subspace iteration because we use an accurate initialization (from

the previous HOOI iteration) and because high accuracy of a HOOI subiteration is

less of a priority than high accuracy of the full HOOI iteration.

3.1.5 HOOI’s Adaptive Rank Optimization

A signicant disadvantage of HOOI is that it solves only the rank-specied formula-

tion of the Tucker approximation problem, whereas ST-HOSVD can adaptively select

ranks based on a relative error tolerance. We propose a technique that allows HOOI

to automatically adapt ranks to meet a user-specied relative error tolerance.

Recall that for the error-specied formulation, given an error tolerance ε and an

initial rank estimate r, our method adaptively nds a Tucker decomposition X̂ =

[G;U1,    ,Ud] for a tensor X  Rn1×···×nd such that ∥X̂ − X∥ ≤ ε∥X∥. We start

with a typical HOOI iteration using our initial rank estimate r, partially compressing

61

our tensor in all modes except mode k and updating factor matrix Uk to be the rst

rk left singular vectors of the partially compressed tensor. Once all modes have been

processed in this manner, we check the error of the approximation at that point.

Whereas in classical HOOI the core is only updated after the iterations, here we

compute the core tensor at the end of every iteration and perform error analysis on

it. To check the error, we use the identity that for orthonormal matrices U1,    ,Ud

and G = X ×1U
⊺
1×· · ·×dU

⊺
d, the approximation error can be written as ∥X − X̂∥2 =

∥X − G ×1 U1 × · · · ×d Ud∥2 = ∥X ∥2 − ∥G∥2 ([1, Proposition 6.3]). If the current

Tucker approximation is not suciently accurate, we increase all ranks by a factor

α and perform the next HOOI iteration. If the current approximation satises the

error threshold, then we can optimize over all rank truncations by analyzing the core

tensors entries. We can thus estimate the relative error in the approximation by

computing ∥G∥, and choosing the next rank r so that ∥G(1 : r)∥2 ≈ (1 − ε2)∥X∥2

Specically, we solve the optimization problem

min
r

d

j=1

rj +

d

j=1

njrj ,

subject to ∥G(1 : r)∥2 ≥ (1− ε2)∥X∥2

(3.5)

This computes the leading subtensor of G that minimizes the size of the Tucker

approximation and also satises the error threshold. Note that any subtensor of

the core, along with the corresponding columns of the factor matrices, is a valid

62

Tucker approximation with error determined by the norm of the core subtensor. The

optimal subtensor need not be a leading one, but we order factor matrix columns

to concentrate the weight of G towards the entry of smallest index value so that the

heuristic of searching over only leading subtensors is reasonable.

If such a rank r exists, we set our next rank as the solution to (3.5) and truncate

to that rank before iterating. If no r exists, our current rank is too small, so we

increase it by a some factor α before the next iteration. Typically, α ≈ 2 is sucient.

The details of this algorithm, are described in algorithm 10. In practice, we do the

optimization problem above in a way that minimizes the memory footprint. We

compute the cumulative sum of the squared core and then consider all values of this

cumulative sum squared tensor to solve the optimization problem (3.5).

Algorithm 10 Adaptive HOOI

function performCoreAnalysis(G, ϵ, r)
if G2 ≥ (1− ϵ2)X 2 then

Find r = arg min G(1 : r)2
subject to G(1 : r)2 ≥ (1− ϵ2)X 2

Truncate G, A, B, C according to r
else

r = α r
Increase columns of A,B,C according to r

end if
return r

end function

63

3.2 The TuckerMPI Library

TuckerMPI uses P processors organized into a d-dimensional P1 × · · · × Pd grid such

that P =
d

i=1 Pi and that each processor stores a 1P fraction of X . Our analysis will

assume X  Rn×···×n and G  Rr×···×r to simplify cost comparison across algorithms.

3.2.1 TuckerMPI’s ST-HOSVD

ST-HOSVD’s Computational Complexity

The cost of LLSV in line 8 is given by

d

j=1


rj−1nd−j+2

P
+O(n3)


≈ nd+1

P
+O(dn3),

where the rst term is the cost of computing the n× n Gram matrix and the second

term is the cost of sequentially computing the EVDs to leading order. After Uk is

computed, Y is truncated by performing the TTM in line 9, which costs

2

d

j=1

rjnd−j+1

P
≈ 2

rnd

P


Computing the Gram matrix is a factor of n2r more expensive than the TTM and is

the dominant cost for n ≫ r. Sequentially truncating Y leads to decreasing dimen-

sions, so the algorithm is typically dominated by the rst Gram matrix computation.

Note that the EVD is not parallelized, which can be a barrier to parallel scaling when

64

a single tensor dimension is large. We summarize the leading order ST-HOSVD ops

cost in table 3.1 (shown in red).

ST-HOSVD’s Communication Complexity

TuckerMPIs parallel algorithm for LLSV explicitly forms the Gram matrix, G =

Y(k)Y
⊺
(k), where Y(k) is redistributed (if necessary) to a 1D column layout across P

processors, and then sequentially computes the EVD of G. After redistribution of

G, each processor computes a local Gram matrix which can be sum-reduced (or all-

reduced) prior to the EVD. At iteration k, the number of entries in Y is rj−1nd−j+1.

The Gram matrix that is computed in each mode is of size n × n, so the total com-

munication cost is dn2 for the all-reduce. Thus, the communication cost is given

by

d

j=1


rj−1nd−j+1

P
· Pj − 1

Pj

+O(n2)


≈ nd

P
· P1 − 1

P1

+ O(dn2),

where we assume the redistribution cost is dominated by the rst mode. However,

note that there is no redistribution cost in mode j if Pj = 1. Finally, the parallel TTM

also requires communication to perform a sum-reduce of local TTM results. Since the

output of the TTM is largest in the rst mode (of size rnd−1P), the communication

cost of TTMs to leading order cost is

d

j=1

rjnd−j

P
(Pj − 1) ≈ rnd−1

P
(P1 − 1)

65

Again, note there is no communication cost in mode j if Pj = 1. Because the largest

data communicated occurs in mode 1, processor grids with P1 = 1 are typically

the fastest for ST-HOSVD (as we observe in our experiments). We summarize the

ST-HOSVD communication costs in table 3.2 (shown in red).

3.2.2 TuckerMPI’s HOOI

HOOI’s Computational Complexity

Since HOOI is an iterative algorithm for Tucker decomposition, we analyze the cost

of one HOOI iteration. Each HOOI iteration requires d multi-TTMs, in all modes but

mode-j, and d LLSV computations to update factors matrices, in all modes. Once

the factor matrices have been updated, the core tensor G is obtained by performing a

TTM with the last factor matrix Ud. The cost of computing d multi-TTMs is given

by

2d

d

i=1

rind−i+1

P
≈ 2d

rnd

P


The cost of each TTM decreases, so the rst term in the summation (i.e. the rst

TTM) dominates. Multiplying the cost of the rst TTM by d yields the cost of d

multi-TTMs (i.e. one HOOI iteration). The cost of computing LLSV is given by

d
rd−1n2

P
+O(dn3),

66

where the rst term is the cost of computing the Gram matrixY(k)Y
⊺
(k) and the second

term is the cost of computing the EVD. Finally, the core tensor at the end of each

HOOI iteration is obtained by performing a TTM in mode-d with the intermediate

tensor Y and Ud, which has a cost of 2·nrdP and is a lower order term. We summarize

the leading order cost per HOOI iteration as implemented by TuckerMPI in table 3.1

(shown in red).

HOOI’s Communication Complexity

The communication cost of each iteration of HOOI is dominated by multi-TTMs

and LLSV computations. Each TTM in the multi-TTM requires communication to

perform a sum reduction to form Y . Communication is required along the processor

dimension corresponding to the mode in which a TTM is performed. The size of Y

decreases with each TTM, so the communication cost of a multi-TTM is dominated

by the rst TTM. Each HOOI iteration performs d multi-TTMs, where one iteration

updates the factor matrix in the rst mode. The cost of communication for the

multi-TTMs is given by

d

j=1

 j−1

i=1

rind−i+2

P
(Pi − 1) +

d

i=j+1

ri−1nd−1+1

P
(Pi − 1)



≈ (d− 1)
rnd−1

P
(P1 − 1) +

rnd−1

P
(P2 − 1)

67

The rst term corresponds to the d − 1 TTMs performed in the 1st mode and the

second term corresponds to TTMs performed in the 2nd mode (for the multi-TTM

in all but the 1st mode).

Communication is also required when computing the LLSV in each mode. Using

the same LLSV algorithm as in ST-HOSVD, the Gram matrix is computed in parallel

followed by a sequential EVD. Computing the Gram matrix requires an all-to-all to

redistribute Y(k) so that it is stored in 1D-column layout. After redistribution YkY
⊺
k

is computed in parallel by performing local matrix-matrix multiplications that are

sum-reduced to obtain the Gram matrix. The cost of communication for the LLSV

is given by

rd−1n

P

d

i=1


Pi − 1

Pi


+ dn2,

where the rst term is the cost of all-to-all communication and the second term is

the cost of sum reduction of the Gram matrix for one HOOI iteration (i.e. d calls to

LLSV). We summarize the HOOI communication costs as implemented by TuckerMPI

in Table 3.2 (shown in red).

68

3.2.3 TuckerMPI’s Dimension Tree

Dimension Tree Computational Complexity

The ops cost of performing multi-TTMs using dimension-trees is given by

4

d2

i=1

rind−i+1

P
+O


d

d

i=d2+1

rind−i+1


 ≈ 4

rnd

P
,

where the rst term is the cost of computing the TTMs in the rst two branches

(left and right of the root) in the dimension tree and the second term is the cost of

computing the TTMs in all remaining branches. The largest TTMs in the rst two

branches dominate, so the cost of multi-TTMs is 4 · rndP (i.e. the rst TTM in each

branch), which is a factor of d2 improvement over computing multi-TTMs directly.

This cost is summarized in Table 3.1.

Dimension Tree Communication Complexity

Since the rst TTM in each of the two multi-TTMs o the root dominate, the com-

munication cost of multi-TTMs is given by

d2

i=1

rind−i−1

P
(Pi − 1 + Pd−i+1 − 1) ≈ rnd−1

P
(P1 + Pd − 2) 

When traversing the right branch in the dimension tree shown in section 3.1.3,

TTMs are performed in the rst d2 modes starting with mode 1. The communication

cost associated with TTMs in the right branch is the cost of a reduce-scatter on local

69

data of size rnd−1P · (P1 − 1), which yields the rst term. The second term is due to

the communication cost associated with traversing the left branch in section 3.1.3.

TTMs in the left branch are performed in the last d2 modes starting with mode d.

We perform left branch TTMs in reverse order because the mode d TTM achieves

higher local TTM performance due to the layout of the local tensor in memory.

The communication cost associated with TTMs in the left branch is the same as

the rst term, except that the reduce-scatter is performed in the Pd processor grid

dimension. Therefore, processor grids with P1 = Pd = 1 are typically the fastest for

HOOI algorithms employing the dimension tree optimization (as we observe in our

experiments).

As shown in tables 3.1 and 3.2, introducing dimension-trees memoization reduces

the ops cost of TTMs in HOOI by a factor of d2 and the communication cost by a

factor of d− 1 in the rst term.

3.2.4 TuckerMPI’s Subspace Iterations

Subspace Iteration Computational Complexity

Each subspace iteration requires two matrix-matrix multiplications and one QR de-

composition. The rst matrix-multiplication corresponds to the TTM G = Y ×k U
⊺
(k)

(in the notation of algorithm 7) and the second computes the tensor contraction

Y(k)G
⊺
(k). The total computational cost of performing the TTM and contraction in

70

each HOOI iteration is 4d · nrdP . The cost of the QR decomposition of the matrix

Z  Rn×r in each HOOI iteration is O(dnr2), where we assume a sequential QR de-

composition. The total cost of performing subspace iteration in each mode across an

entire HOOI iteration is given by

4d
nrd

P
+O(dnr2)

As shown in table 3.1, the cost of LLSV using subspace iteration is a factor of

14 · nr cheaper than the cost of LLSV via the Gram matrix. When comparing the

sequential EVD to the sequential QR decomposition, the cost of the latter is a factor

of O


nr
2

faster.

Subspace Iteration Communication Complexity

Subspace iteration requires communication in the TTM, tensor contraction, and QR

decomposition in each mode. The communication cost of the TTM is given by rdP ·

(Pk−1), where Pk corresponds to the number of processors in the kth mode. The tensor

contraction requires redistribution of both tensors via all-to-all communication steps.

However, the all-to-all cost is a lower order term since it is a factor of Pk cheaper than

the communication cost associated with the TTM. Once the contraction is performed,

a sum reduction followed by a broadcast is required to ensure that all processors can

independently compute local QR decompositions. The communication cost of the QR

decomposition is given by 2nr since Z  Rn×r and must be communicated twice. As

71

shown in table 3.2, the total communication cost of the LLSV calls within an iteration

of HOOI using subspace iteration is given by

rd

P

d

j=1

(Pj − 1) + 2dnr

3.2.5 TuckerMPI’s Adaptive Rank

Core Analysis Computational Complexity

The cost of one RA-HOOI iteration is the same as one iteration of HOOI given in

table 3.1, but with the possible additional cost of performing analysis on the core

tensor G to adapt the ranks for the next iteration. We solve the optimization prob-

lem given in (3.5) exhaustively by computing the norm and corresponding size of

every leading subtensor. This can be done using only O(drd) operations by employ-

ing a multidimensional prex sum computation across the squares of the core entries.

Because computational cost tends to be dominated by the rest of the HOOI itera-

tion, we perform the core analysis sequentially, though the prex sums are readily

parallelizable.

Assuming that this analysis is performed sequentially, the cost of the core analysis

is O(rd). The cost of the core analysis is dominated by the cost of computing a cumu-

lative sum of entries in G and nding the smallest entry which meets the relative error

tolerance. Performing these operations requires O(rd) ops. Since we need nr to be

72

Algorithm LLSV TTM Core Analysis

HOOI iteration
Gram + Eig dn2rd−1

P
+O(dn3) Direct 2d rnd

P O(drd)
Sub. Iter. 4dnrd

P
+O(dnr2) Dim. Tree 4 rnd

P

ST-HOSVD nd+1

P
+O(dn3) 2 rnd

P
-

RA-HOSI-DT ℓ

4dnrd

P
+O(dnr2)


ℓ

4 rnd

P


ℓ

O(drd)



Table 3.1: Leading order ops costs of LLSV (Gram + Eig and Subspace Iteration),

multi-TTM (Direct and dimension-trees) and Core Analysis algorithmic choices for

HOOI and a comparison between ST-HOSVD and HOOI with Subspace Iteration

and dimension-trees (HOSI-DT) optimizations. We assume ℓ iterations of HOSI-DT

are performed

large for HOOI to improve performance over ST-HOSVD, the cost of sequential core

analysis can be performed in parallel, but we expect that the cost of communication

would outweigh the benets of parallelizing this operation.

Core Analysis Communication Complexity

At the end of a HOOI iteration, G is distributed across all processors, so it must be

gathered on a single processor in order to perform analysis. Since the entire core tensor

must be communicated, the all-gather cost is rd per HOOI iteration. We demonstrate

in section 3.3 that the sequential cost of core analysis is typically negligible.

3.3 Results

This section presents a comparison of the running time (strong scaling and running

time breakdown) and compression (error vs. time and error vs. compression ratio)

73

Algorithm LLSV TTM Core Analysis

HOOI iteration
Gram + Eig nrd−1

P

d
i=1

Pi−1
Pi

+ dn2 Direct (d− 1) rn
d−1

P
(P1 − 1) + rnd−1

P
(P2 − 1)

rd
Sub. Iter. rd

P

d
i=1 (Pi − 1) + 2dnr Dim. Tree. rnd−1

P
(P1 − 1) + rnd−1

P
(Pd − 1)

ST-HOSVD nd

P
P1−1
P1

+ dn2 rnd−1

P
(P1 − 1) -

RA-HOSI-DT t


rd

P

d
i=1(Pi − 1) + 2dnr


t


rnd−1

P
(P1 + Pd − 2)


ℓ

rd


Table 3.2: Leading order bandwidth costs of LLSV (Gram + Eig and Subspace Itera-

tion), multi-TTM (Direct and dimension-trees) and Core Analysis algorithmic choices

for HOOI. For reference, we include a comparison between ST-HOSVD and HOOI

with Subspace Iteration and dimension-trees (HOSI-DT). We assume a processor grid

of P = (P1 × · · · × Pd) and that ℓ iterations of HOSI-DT are performed.

performance of the various Tucker algorithms presented in this work. All algorithms

were implemented using the TuckerMPI (C++/OpenMPI) library [9].

Computing platform. Our experiments were conducted on NERSC Perlmutter

(CPU partition). The system consists of 3072 compute nodes with dual-socket AMD

EPYC 7763 64-core CPUs. Each socket has 4 Non-Uniform Memory Access (NUMA)

regions for a total of 8 NUMA regions per node. Each NUMA region has 64 GB of

DRAM memory, therefore each CPU socket has 256 GB of DRAM for, a total of 512

GB of memory per node.

Experiments. We perform experiments on synthetic tensors that are randomly

generated and tensors obtained from real applications. We use 3-way and 4-way

tensors for the synthetic experiments, and three real datasets: Miranda [23] (3-way),

HCCI [24] (4-way), and SP [25] (5-way). The real datasets are described in more

74

detail in section 3.3.2. Experiments performed on synthetic tensors are performed in

single precision, while experiments on real datasets are performed in single or double

precision depending on their storage precision on disk. Strong scaling experiments

are performed on the synthetic tensors. We show running time breakdown of both

real and synthetic experiments. For synthetic tensors we show the running time

breakdown at small and large scale to highlight how each step in a given algorithm

scales. For real tensors we vary the error tolerance and starting ranks to show how

performance breakdowns vary. Compression performance experiments are performed

only on the real datasets.

Even for a xed number of processors P , the d-way processor grid has a signicant

eect on all algorithms. As described in section 3.2.1, STHOSVD benets from pro-

cessor grids with P1 = 1, and HOOI variants using dimension trees are theoretically

more ecient when P1 = Pd = 1. In addition, for modes with small tensor dimension,

a large processor dimension in that mode may cause load imbalance due to uneven

division. In all experiments, we test all algorithms on a variety of grids, including

those we expect to benet individual algorithms, and we report the fastest observed

running times.

75

3.3.1 Strong Scaling on Synthetic Tensors

First, we present strong scaling experiments on the 3-way and 4-way synthetic ten-

sors to demonstrate the parallel scaling of HOOI, HOOI-DT, HOSI, HOSI-DT, and

STHOSVD. We choose tensor dimensions to maximize the size of the tensor that can

t on a single node (in single precision).

For synthetic input, we generate tensors by forming a Tucker-format tensor of

specied rank and adding a specied level of noise. Thus, these experiments are

performed for the rank-specied formulation of the Tucker approximation problem to

recover the input. We run for two iterations for each variant of HOOI even though we

often have a suciently accurate approximation after a single iteration. We include

overhead due to core analysis for the error-specied formulation in the experiments

on the real datasets. The largest 3-way tensor that ts into single-node memory is a

tensor of size 3750× 3750× 3750. We generate this tensor to have a rank of 30 in all

modes. Similarly, we construct the 4-way tensor of size 560 × 560 × 560 × 560 with

Tucker ranks (10, 10, 10, 10).

Figures 3.4 and 3.5 shows the strong scaling results of the HOOI variants and

STHOSVD on up to 4096 cores for the 3-way and 4-way synthetic datasets. We

observe that STHOSVD scales well to 64 cores, attaining a speedup of 152× over

the single core STHOSVD run. STHOSVD continues to scale up to 2048 cores,

but achieves only a modest speedup of 13× over the 64 core run. This is due to

76

1 2 4 8 16 32 64 12
8
25
6
51
2
10
24
20
48
40
96
81
92

2−1

20
21
22
23
24
25
26
27
28
29
210
211

Number of Cores

T
im

e

3 way

HOOI
HOOI-DT

HOSI
HOSI-DT
STHOSVD

Figure 3.4: Strong scaling comparison of Tucker algorithms in single precision using

a 3-way 3750× 3750× 3750 input tensor

TuckerMPIs limitation of having a sequential EVD implementation. In contrast, the

4-way STHOSVD strong scaling experiment shows good scaling up to 8192 cores,

achieving a speedup of 937× over the single core run. This dierence in STHOSVD

performance is explained by the tensor dimension: a sequential EVD of a matrix of

dimension 560 does not become the bottleneck until P is large.

When comparing the two HOOI variants (which use Gram SVD), we observe that

HOOI-DT yields a sequential speedup of 14× over HOOIs direct TTM implemen-

tation for the 3-way tensor. For the 4-way tensor, HOOI-DT achieves a sequential

speedup of 54× faster than HOOI. When comparing parallel scaling in the 3-way

77

1 2 4 8 16 32 64 12
8
25
6
51
2
10
24
20
48
40
96
81
92

2−1

20
21
22
23
24
25
26
27
28
29
210
211

Number of Cores

T
im

e

4 way

HOOI
HOOI-DT

HOSI
HOSI-DT
STHOSVD

Figure 3.5: Strong scaling comparison of Tucker algorithms in single precision using

a 4-way 560× 560× 560× 560 input tensor

case, we see that HOOI and HOOI-DT scale to 16 cores with a speedup of 35× and

28×, respectively, over their single core runs. However, neither variant scales beyond

16 cores for the 3-way tensor because of the sequential EVD bottlenecks. For the

4-way tensor, HOOI and HOOI-DT scale to 8192 cores with a speedup of 629× and

346×, respectively, over their single core runs. The performance of HOOI and HOOI-

DT degrades at 128 cores (single node) because both variants are memory-bandwidth

bound, and we saturate bandwidth at 64 cores. HOOI and HOOI-DT continue scal-

ing beyond 128 cores (multi-node scaling) because memory bandwidth increases. As

can be seen in the 4096 core plots of gures 3.6 and 3.7, HOOI and HOOI-DT suer

78

from the problem of the sequential EVD, and they are approximately twice as slow

as STHOSVD because they do twice as many EVDs over two iterations.

HOSI and HOSI-DT show signicantly better scaling on the 3-way tensor when

compared to STHOSVD and the HOOI variants because of the dierence in LLSV sub-

routines. HOSI-DT achieves sequential speedups of 65× and 17× over STHOSVD

and HOOI-DT, respectively. The HOSI variants scale to 4096 cores with HOSI-

DT achieving signicant parallel speedups of 259× and 515× over STHOSVD and

HOOI-DT, respectively. HOSI-DT is also the fastest Tucker variant for the 4-way

experiment attaining speedups of 15× and 29× over STHOSVD and HOOI-DT,

respectively when comparing the best running times of each algorithm. HOSI and

HOSI-DT exhibit similar memory bandwidth scaling behavior as the HOOI variants

where performance degrades at 128 cores (single node) and continues to scale beyond

128 cores (multi-node scaling). These can be seen on gures 3.6 and 3.7. We chose

to showcase the breakdown using 1 core and using 4096 cores.

3-way. Observing the single-node scaling (1 to 128) of the 3-way experiment, we

notice that all HOOI algorithms outperform STHOSVD, with HOSI and HOSI-DT

being much further ahead of the competition since the large n
r
ratio of this experiment

implies a LLSV bottleneck and these two algorithms avoid that. Here, STHOSVD

is much slower because it does a more expensive LLSVs before the TTMs whereas

the HOOI algorithms reduce this cost by performing the TTMs beforehand. Starting

79

Eig/QR

Gram/Cont. Comm

Gram/Cont. Comp

TTM Comm

TTM Comp

0

1,000

2,000
T
im

e

1 Core(s)

0

100

200

300

8 Core(s)

HO
OI

HO
OI
-D
T
HO

SI

HO
SI-

DT

ST
HO

SV
D

0

100

200

64 Core(s)

HO
OI

HO
OI
-D
T
HO

SI

HO
SI-

DT

ST
HO

SV
D

0

100

200

T
im

e

512 Core(s)

HO
OI

HO
OI
-D
T
HO

SI

HO
SI-

DT

ST
HO

SV
D

0

100

200

4096 Core(s)

Figure 3.6: Running time breakdown for the synthetic 3-way tensor

Eig/QR

Gram/Cont. Comm

Gram/Cont. Comp

TTM Comm

TTM Comp

0

500

1,000

T
im

e

1 Core(s)

0

20

40

60

80

8 Core(s)

HO
OI

HO
OI
-D
T
HO

SI

HO
SI-

DT

ST
HO

SV
D

0

10

20

64 Core(s)

HO
OI

HO
OI
-D
T
HO

SI

HO
SI-

DT

ST
HO

SV
D

0

2

4

6

T
im

e

512 Core(s)

HO
OI

HO
OI
-D
T
HO

SI

HO
SI-

DT

ST
HO

SV
D

0

1

2

4096 Core(s)

Figure 3.7: Running time breakdown for the synthetic 4-way tensor

80

from 32 nodes, STHOSVD begins to outperform HOOI and HOOI-DT due to the

cost of the LLSV. Figure 3.6 demonstrates that the cost of LLSV is the same for

HOOI, HOOI-DT and STHOSVD, but because HOOI must perform two iterations,

it takes twice as long. In fact, we see that the three algorithms stagnate at large

scaling due to TuckerMPIs limitation of having a sequential eigenvalue computation.

Though HOSI and HOSI-DT still perform two iterations, neither of them need to

pay the cost of the sequential eigenvalue decomposition. Even with a sequential QR

decomposition, they still scale best, with the lesser TTM cost of HOSI-DT making it

the best out of these ve algorithms.

For the 3-way synthetic tensor on 1 core, it can be seen that the cost of the

Gram computation is the bottleneck for STHOSVD. The TTM cost for the dimension

tree algorithms are cheaper, as expected. HOSI-DT is faster than HOOI-DT simply

because of the smaller cost for the LLSV computations. The two iterations for all

HOOI algorithms are faster than the single iteration for STHOSVD. However, that is

not the case for the 4096 cores experiment. Now, the TTM costs for all algorithms are

negligible due to the parallel scaling. The Gram computation for STHOSVD is also

negligible now for the same reasons. The bottleneck at this scale is now the Eigenvalue

computation. The reason why HOOI, HOOI-DT, and STHOSVD stagnate over the

high number of cores on Figure 3.4 is because of TuckerMPIs limitation of having

a sequential eigenvalue computation, and the reason why HOOI and HOOI-DT are

81

twice as expensive on multi-node experiments is because they must do two iterations,

this fact can be visualized on the breakdown for the 4096 cores experiment.

4-way. In this experiment, HOOI-DT and HOSI-DT are the ones that get a compar-

ative headstart since the small n
r
ratio of this experiment implies a TTM bottleneck

and these two algorithms avoid that. They diverge around 128 cores for the same

reasons mentioned above as HOOI-DT must pay the cost of two expensive eigenvalue

computations. For that matter, STHOSVD still eventually catches up to HOOI-DT,

but now this happens at 512 cores as opposed to 32. For this reason, HOSI eventually

closes the gap to HOSI-DT, with STHOSVD being not too far behind simply because

of the smaller n
r
.

3.3.2 Performance on Simulation Datasets

We turn our focus for the error-specied comparison of our best algorithm, HOSI-

DT, and the state-of-the-art, STHOSVD. The data sets are decomposed using three

error tolerances; 0.1 (high compression), 0.05 (mid compression), and 0.01 (low

compression). Furthermore, we showcase HOSI-DT through three dierent types of

starting ranks for each error tolerance. Perfect starting ranks are the same as the nal

ranks of STHOSVD given the maximum relative error threshold. We overshoot and

undershoot the same starting ranks by 25% above and below to force our algorithm

to respectively increase and decrease ranks on the rst iteration. We cap the number

82

of iterations for HOSI-DT at 3. Though all three iterations are shown in the Error vs

Time and Error vs Size plots, the running time breakdown plots show the breakdown

only for however many iterations it took for HOSI-DT to reach the desired error

threshold. For example, the top right plot of gure 3.11 it can be seen that the

HOSI-DT (Over) 0.1 threshold reached the desired at the rst iteration, so we dont

show the breakdown for the second iteration despite its total time being shown on

gure 3.10.

Miranda (3-way)

The Miranda dataset is a three-dimensional simulation data of the density ratios of

non-reacting ow of viscous uids [23]. Each of its dimensions is 3072, and it is stored

in single precision requiring 115 GB. Our experiments use 1024 cores (8 nodes) for all

algorithms.

Figure 3.8 demonstrates that for all error tolerances, three iterations of HOSI-

DT combined is faster than STHOSVD. But as mentioned earlier, we focus on the

least amount of iterations required to reach the desired error threshold. It is in

high- and mid-compression where we nd the most speedup. Precisely, perfect ranks

achieve speedups of 82× for high-compression and 25× for mid-compression, un-

dershooting the ranks achieves speedups of 91× for high-compression and 35× for

mid-compression, and overshooting the ranks achieves speedups of 156× for high-

83

0 20 40 60

01

005

001

Time (in seconds)

R
el
at
iv
e
E
rr
or

Error vs Time

04 06 08 1 12 14 16

01

005

001

Size (relative to STHOSVD)

Error vs Size

HOSI-DT Over HOSI-DT Perfect
HOSI-DT Under STHOSVD

Figure 3.8: Progression of time, error, and relative size over 3 iterations of rank-

adaptive HOSI-DT on the Miranda dataset using 1024 cores.

compression and 47× for mid-compression. Low-compression is the rst scenario

where we observe nonnegligible costs of the core analysis subroutine. For high-

compression, the best relative compression ratio is 69% which occurs at perfect

ranks, mid-compression achieves a 10% improvement using perfect ranks, and low-

compression has better compression at 6% when underestimating the ranks.

HCCI (4-way) and SP (5-way)

We combine the discussion of the HCCI and SP datasets results, as the results

are qualitatively similar. The Homogeneous Charge Compression Ignition (HHCI)

dataset is generated from a numerical simulation of combustion [24]. The dimension

84

Core Comm
Core Comp

Eig/QR
Contraction Comm
Contraction Comp

TTM Comm
TTM Comp

Un
der

Pe
rfe
ct

Ov
er

ST
HO

SV
D

0

20

40

60

T
im

e

1e-01 Error

Un
der

Pe
rfe
ct

Ov
er

ST
HO

SV
D

0

20

40

T
im

e

5e-02 Error

Un
der

Pe
rfe
ct

Ov
er

ST
HO

SV
D

0

20

40

T
im

e

1e-02 Error

Figure 3.9: Running time breakdown for the Miranda dataset using 1024 cores under

dierent levels of compression.

85

of the 4-way dataset is 672× 672× 33× 626 stored in double precision for a total of

75 GB. Thus, we can t it on a single node and use all 128 cores. The rst two modes

are spatial dimensions, the third mode corresponds to 33 variable, and the fourth

mode corresponds to time steps. The SP dataset is generated from the simulation

of a statistically stationary planar methane-air ame [25]. This 5-way dataset has

dimensions 500 × 500 × 500 × 11 × 400 stored in double precision and requires 4.4

TB in storage. For these experiments, we use 2048 cores (16 nodes). The rst three

modes are spatial dimensions, the fourth mode corresponds to 11 variables, and the

last mode corresponds to time steps.

In the case where we are dominated by the TTMs, the comparisons between HOSI-

DT and STHOSVD are less extreme. Figure 3.10 shows that on low-compression,

STHOSVD is faster than any of the starting ranks of HOSI-DT to get to the de-

sired threshold. However, for high- and mid-compression HOSI-DT achieves speedups

when overshooting the ranks, specically 19× for high-compression and 14× for low-

compression, neither of which achieved better compression. Figure 3.11 shows the

breakdown times of these speedups. However, HODI-DT achieves better compres-

sion with perfect and under ranks for all error tolerances, but always requiring three

iterations to do so.

Figure 3.12 shows that we can typically obtain better compression after three it-

erations. For example, overestimating the ranks for low compression yields a speedup

86

0 5 10 15 20

01

005

001

Time (in seconds)

R
el
at
iv
e
E
rr
or

Error vs Time

04 06 08 1 12 14

01

005

001

Size (relative to STHOSVD)

Error vs Size

HOSI-DT Over HOSI-DT Perfect
HOSI-DT Under STHOSVD

Figure 3.10: Progression of time, error, and relative size over 3 iterations of rank-

adaptive HOSI-DT on the HCCI dataset using 128 cores.

of 11× after 1 iteration, but we do not obtain better compression. Similar to HCCI,

three iterations produces a smaller Tucker approximation but takes over twice as long.

However, for high compression, starting from perfect and underestimates of the ranks

achieve a 27% and 8% improvement on compression over STHOSVD after two iter-

ations, respectively. In another example, gure 3.13 shows that when starting from

perfect estimates of the ranks for mid compression, HOSI-DT gets the desired error

tolerance and same compression ratio in less time than STHOSVD, with HOSI-DT

achieving a 14× speedup.

87

Core Comm
Core Comp

Eig/QR
Contraction Comm
Contraction Comp

TTM Comm
TTM Comp

Un
der

Pe
rfe
ct

Ov
er

ST
HO

SV
D

1

2

3

4

T
im

e

1e-01 Error

Un
der

Pe
rfe
ct

Ov
er

ST
HO

SV
D

1

2

3

4

5

T
im

e

5e-02 Error

Un
der

Pe
rfe
ct

Ov
er

ST
HO

SV
D

0

5

10

15

T
im

e

1e-02 Error

Figure 3.11: Running time breakdown for the HCCI dataset using 128 cores under

dierent levels of compression.

88

5 10 15 20 25 30

01

005

001

Time (in seconds)

R
el
at
iv
e
E
rr
or

Error vs Time

02 04 06 08 1 12 14

01

005

001

Size (relative to STHOSVD)

Error vs Size

HOSI-DT Over HOSI-DT Perfect
HOSI-DT Under STHOSVD

Figure 3.12: Progression of time, error, and relative size over 3 iterations of rank-

adaptive HOSI-DT on the SP dataset using 2048 cores.

89

Core Comm
Core Comp

Eig/QR
Contraction Comm
Contraction Comp

TTM Comm
TTM Comp

Un
der

Pe
rfe
ct

Ov
er

ST
HO

SV
D

2

4

6

8

10

12

T
im

e

1e-01 Error

Un
der

Pe
rfe
ct

Ov
er

ST
HO

SV
D

0

5

10

15

20

25

T
im

e

5e-02 Error

Un
der

Pe
rfe
ct

Ov
er

ST
HO

SV
D

0

5

10

15

20

T
im

e

1e-02 Error

Figure 3.13: Running time breakdown for the SP dataset using 2048 cores under

dierent levels of compression.

90

CONCLUSION

Chapter 2 explores the realm of fast matrix multiplication algorithms. These algo-

rithms improve on the computational complexity of the classical algorithm, but the

problem of the complexity of matrix multiplication remains open. Many dierent

techniques are used to search for algorithms that attempt to shorten the gap be-

tween known upper bounds and proven lower bound. The techniques explored in this

chapter search for algorithms that are cyclic invariant, which decrease the number of

search parameters in a numerical optimization algorithm. With the introduction of

CI CP DGN, we have been able to obtain many valid algorithms with this property

for multiple base case dimensions. Our on-going work attempts to search for further

symmetries in the algorithms we have found while searching for cyclic invariant algo-

rithms. Once a more robust comprehension of these symmetries is achieved, our goal is

to study how these symmetries lay the foundation for more structure to be exploited in

the search for fast matrix mutliplication algorithms. We intend to submit this work for

publication in the near future. The code associated with this project can be found in

https://github.com/Jv7Pinheiro/FastMatrixMultiplyAlgorithmsSearch.git.

91

Chapter 3 describes three optimization for the HOOI algorithm to make it a

competitive alternative to the state-of-the art algorithm ST-HOSVD. The dimension-

tree, subspace iteration optimizations reduce the computational complexity of each

HOOI iteration, and the rank adaptive optimization generalizes the method to solve

the error-specied Tucker approximation problem.

Based on the complexity analysis and experimental results, we conclude that our

parallel RA-HOSI-DT computes Tucker approximations of comparable error in less

time than TuckerMPIs implementation of STHOSVD in two important scenarios:

(1) when large individual tensor dimensions create sequential EVD bottlenecks, and

(2) when individual ratios between input tensor and core tensor dimensions are large.

In the rst case, because of the scalability of RA-HOSI-DT, we observe very large

speedups with large P . In the second case, our theoretical analysis suggests a speedup

roughly proportional to nr. However, we observe that while the number of ops is

reduced compared to STHOSVD, the local matrix computation performance degrades

because the smallest matrix dimension in the computation becomes r instead of n.

That is, if the ranks are very small, then local matrix computations with RA-HOSI-

DT run far below peak processor performance and are instead limited by the memory

bandwidth. This memory bandwidth bottleneck is the reason RA-HOSI-DT loses

scalability when using all cores on a single node and is the main reason the theoretical

computational cost analysis doesnt match empirical performance at scale.

92

RA-HOSI-DT requires an input estimate of the nal core ranks. While priori

knowledge is not required, we observe that slight overestimates of the nal ranks

yield suciently accurate solutions often in the rst iteration. When ranks are un-

derestimated, HOOI must iterate until an overestimate is discovered, after which a

single iteration yields convergence.

Furthermore, in solving the error-specied optimization problem, we highlight that

RA-HOSI-DT often identies Tucker approximations with better compression ratios

than STHOSVD. This is due in large part to the exibility aorded by the RA-HOSI-

DT core analysis step to shift ranks across modes to maximize overall compression, as

opposed to STHOSVD, which makes greedy decisions at each mode. If compression

ratio is more important than time, taking more HOOI iterations can help to improve

accuracy and often reduce ranks further.

All of our parallel implementations have been carried through in the TuckerMPI

library. We intend to merge our work with the main branch soon, which can be found

https://gitlab.com/tensors/TuckerMPI.git. This work has been submitted for

publication.

93

Bibliography

[1] Grey Ballard and Tamara G. Kolda. Tensor Decompositions for Data Science.

Cambridge University Press, 2025.

[2] Rodney Johnson and Aileen McLoughlin. Noncommutative Bilinear Algorithms

for 3 x 3 Matrix Multiplication. In: SIAM Journal on Computing 15.2 (1986),

pp. 595–603. doi: 10.1137/0215043.

[3] Grey Ballard et al. The geometry of rank decompositions of matrix multipli-

cation II: 3x3 matrices. In: arXiv 1801.00843 (2019).

[4] Kathryn Rouse. On the Eciency of Algorithms for Tensor Decompositions

and Their Applications. Available from Dissertations and Theses at Wake For-

est University; ProQuest Dissertations and Theses Global. (2051225085). 2018.

url: https://wake.idm.oclc.org/login?url=https://www.proquest.com/

dissertations-theses/on-efficiency-algorithms-tensor-decompositions/

docview/2051225085/se-2.

[5] Jan R. Magnus and H. Neudecker. The Commutation Matrix: Some Properties

and Applications. In: The Annals of Statistics 7.2 (1979), pp. 381–394. doi:

10.1214/aos/1176344621.

[6] Woody Austin, Grey Ballard, and Tamara G. Kolda. Parallel Tensor Compres-

sion for Large-Scale Scientic Data. In: Proceedings of the 30th IEEE Interna-

tional Parallel and Distributed Processing Symposium. May 2016, pp. 912–922.

94

doi: 10.1109/IPDPS.2016.67. url: https://www.computer.org/csdl/

proceedings/ipdps/2016/2140/00/2140a912-abs.html.

[7] V. T. Chakaravarthy et al. On Optimizing Distributed Tucker Decomposition

for Dense Tensors. In: 2017 IEEE International Parallel and Distributed Pro-

cessing Symposium (IPDPS). May 2017, pp. 1038–1047. doi: 10.1109/IPDPS.

2017.86.

[8] Jee Choi, Xing Liu, and Venkatesan Chakaravarthy. High-performance Dense

Tucker Decomposition on GPU Clusters. In: Proceedings of the International

Conference for High Performance Computing, Networking, Storage, and Anal-

ysis. SC 18. Dallas, Texas: IEEE Press, 2018, 42:1–42:11. url: http://dl.

acm.org/citation.cfm?id=3291656.3291712.

[9] Grey Ballard, Alicia Klinvex, and Tamara G. Kolda. TuckerMPI: A Parallel

C++/MPI Software Package for Large-Scale Data Compression via the Tucker

Tensor Decomposition. In: ACM Transactions on Mathematical Software 46.2

(June 2020). issn: 0098-3500. doi: 10.1145/3378445. url: https://dl.acm.

org/doi/10.1145/3378445.

[10] Rafael Ballester-Ripoll, Peter Lindstrom, and Renato Pajarola. TTHRESH:

Tensor Compression for Multidimensional Visual Data. In: IEEE Transactions

on Visualization and Computer Graphics 26.9 (2020), pp. 2891–2903. doi: 10.

1109/TVCG.2019.2904063.

[11] Wouter Baert and Nick Vannieuwenhoven. Algorithm 1036: ATC, An Ad-

vanced Tucker Compression Library for Multidimensional Data. In: ACM Trans-

actions on Mathematical Software 49.2 (June 2023), pp. 1–25. doi: 10.1145/

3585514.

[12] Saibal De et al. Hybrid Parallel Tucker Decomposition of Streaming Data.

In: Proceedings of the Platform for Advanced Scientic Computing Conference.

PASC 24. Zurich, Switzerland: Association for Computing Machinery, 2024.

95

isbn: 9798400706394. doi: 10.1145/3659914.3659934. url: https://doi.

org/10.1145/3659914.3659934.

[13] Nick Vannieuwenhoven, Raf Vandebril, and Karl Meerbergen. A New Trunca-

tion Strategy for the Higher-Order Singular Value Decomposition. In: SIAM

Journal on Scientic Computing 34.2 (2012), A1027–A1052. doi: 10.1137/

110836067. eprint: http://dx.doi.org/10.1137/110836067. url: http:

//dx.doi.org/10.1137/110836067.

[14] Wolfgang Hackbusch. Tensor Spaces and Numerical Tensor Calculus. 2nd. Springer

International Publishing, 2019. isbn: 9783030355548. doi: 10.1007/978-3-

030-35554-8.

[15] Pieter M Kroonenberg and Jan De Leeuw. Principal component analysis of

three-mode data by means of alternating least squares algorithms. In: Psy-

chometrika 45 (1980), pp. 69–97. doi: 10.1007/BF02293599.

[16] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best rank-1

and rank-(r1, r2, , rn) approximation of higher-order tensors. In: SIAM jour-

nal on Matrix Analysis and Applications 21.4 (2000), pp. 1324–1342. doi: 10.

1137/S089547989834699.

[17] Arie Kapteyn, Heinz Neudecker, and Tom Wansbeek. An approach to n-mode

components analysis. In: Psychometrika 51 (1986), pp. 269–275. doi: 10.1007/

BF02293984.

[18] Venkatesan T Chakaravarthy et al. On optimizing distributed Tucker decompo-

sition for dense tensors. In: 2017 IEEE International Parallel and Distributed

Processing Symposium (IPDPS). IEEE. 2017, pp. 1038–1047. doi: 10.1109/

IPDPS.2017.86.

[19] Linjian Ma and Edgar Solomonik. Accelerating alternating least squares for

tensor decomposition by pairwise perturbation. In: Numerical Linear Algebra

with Applications e2431 (2022), pp. 1–33. doi: 10.1002/nla.2431.

96

[20] Anh-Huy Phan, Petr Tichavsky, and Andrzej Cichocki. Fast Alternating LS

Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations.

In: IEEE Transactions on Signal Processing 61.19 (Oct. 2013), pp. 4834–4846.

issn: 1053-587X. doi: 10.1109/TSP.2013.2269903.

[21] Oguz Kaya and Yves Robert. Computing dense tensor decompositions with

optimal dimension trees. In: Algorithmica 81 (2019), pp. 2092–2121. doi: 10.

1007/s00453-018-0525-3.

[22] Rachel Minster, Zitong Li, and Grey Ballard. Parallel Randomized Tucker

Decomposition Algorithms. In: SIAM Journal on Scientic Computing 46.2

(2024), A1186–A1213. doi: 10.1137/22m1540363. url: https://doi.org/10.

1137/22M1540363.

[23] Kai Zhao et al. SDRBench: Scientic Data Reduction Benchmark for Lossy

Compressors. In: IEEE International Conference on Big Data. 2020, pp. 2716–

2724. doi: 10.1109/BigData50022.2020.9378449.

[24] Ankit Bhagatwala, Jacqueline H. Chen, and Tianfeng Lu. Direct numerical

simulations of HCCI/SACI with ethanol. In: Combustion and Flame 161.7

(2014), pp. 1826–1841. issn: 0010-2180. doi: 10.1016/j.combustflame.2013.

12.027. url: https://www.sciencedirect.com/science/article/pii/

S0010218014000030.

[25] Hemanth Kolla et al. Velocity and Reactive Scalar Dissipation Spectra in

Turbulent Premixed Flames. In: Combustion Science and Technology 188.9

(2016), pp. 1424–1439. doi: 10.1080/00102202.2016.1197211. eprint: https:

//doi.org/10.1080/00102202.2016.1197211. url: https://doi.org/10.

1080/00102202.2016.1197211.

97

CURRICULUM VITAE

João Pinheiro
deolj19@wfu.edu  jv7pinheiro.github.io

EDUCATION

Wake Forest University, Winston-Salem, North Carolina

Masters of Science in Computer Science, GPA 3.9, May 2025

Wake Forest University, Winston-Salem, North Carolina

Bachelor of Science in Applied Mathematics, May 2023, Cum Laude

Minors in Computer Sciences and in Schools, Education, and Society (SES)

Westhill Institute, Mexico City

IB Diploma, May 2019

RESEARCH EXPERIENCE

In Computer Science

• Tensor Decompositions, Dr. Grey Ballard & Dr. Aditya Devarakonda, Summer

2023 - Spring 2025

• Fast Matrix Multiplication, Dr. Grey Ballard & Dr. Frank Moore, Summer

2023 - Spring 2025

98

• Machine Learning & Computer Vision, Dr. Paul Pauca, Fall 2022 - Spring 2023

In Education

• Latin American Education, Dr. Betina Wilkinson, Fall 2019 - Spring 2020

• Educational Computer Science, Dr. Ali Sakkal, Spring 2023, (SES Minor Senior

Project)

PROFESSIONAL EXPERIENCE

Research Assistant, Department of Computer Science WFU, July 2023 - Spring

2025

Teaching Assistant, Department of Computer Science WFU, Spring 2025

Academic Tutor, Math and Stats Center WFU, January 2021 - Spring 2025

Student Tutor, Latinx Mentoring Initiative at Latino Community Services, August

2019 - December 2020

Mentor, Big Brother Big Sisters, January 2019 - December 2020

PUBLICATIONS AND PRESENTATIONS

• K. Cui, Z. Shao, G. Larsen, V.P. Pauca, S. Alqahtani, D. Segurado, J. Pinheiro,

M. Wang, D. Lutz, R. Plemmons, and M. Silman. 2024. PalmProbNet: A Prob-

abilistic Approach to Understanding Palm Distributions in Ecuadorian Tropical

Forest via Transfer Learning. Proceedings of the 2024 ACM Southeast Confer-

ence (ACMSE 24). ACM, 272-277. https://doi.org/10.1145/3603287.3651220

99

• Searching for Cyclic-Invariant Fast Matrix Multiplication Algorithms. Pre-

sented at Workshop on Sparse Tensor Computations in October 2023 and Grad-

uate School of Arts & Sciences Graduate Student and PostDoc Research Day

in March 2024 (Both were poster presentations of the same project).

• Introducing a Parallel Implementation For HOOI Tucker Tensor Decomposition

With Rank Adaptivity. Presented at the SIAM Conference on Computational

Science and Engineering in March 2025.

• João Pinheiro, Grey Ballard, Frank Moore, Pratyush Mishra, The geometry of

rank decompositions of matrix multiplication III: 4x4 matrices (in preparation)

• João Pinheiro, Grey Ballard, Aditya Devarakonda, Introducing Parallel Rank-

Adaptive Higher Order Orthogonal Iteration. (submitted to SC25)

SPECIAL SKILLS

Programing Languages: MATLAB, C/C++, OpenMP/OpenMPI, Java, Python, Git,

Slurm, Bash, Latex/Tikz Fluent in English, Spanish, Portuguese, and Italian.

100

