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Classical Matrix Multiplication:

A A [ B B2l [AuBi+ ABn AuBio 4+ ApBxn

A1 Axn| | Bor Baa| | AnBi1 + AnBy A Bio + Axnbr
AB = C,O(n%), for A, B € R™"

Fast algorithms pre-compute sums and differences of inputs and then use the
distributive property of multiplication followed by more sums to carefully cancel
terms [1]. Strassen's 1969 algorithm is perhaps the best example, which has a
computational cost of O(n'€") ~ O(n*8Y).
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Matrix Multiplication as a Tensor Operation:
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For Example:
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Strassen’s Algorithm as Factor Matrices of a KTensor:
1 0 0o o0 1 1 -1 M1 = (A1 + Ax) - (Bu + B2)
A 0 1 O 0 0 O 1 M2 — (At + Ax) - By
0 0 0 1 1 0 © M3 = Ay - (B — By)
:1 1 1 -1 0 O 0 | V4 — As - (B — Bip)
1 1 -1 0 0 0 1 M5 = (An+ Ap) - By
B _ 0 O 1 1 O 0 0 M6 = (Ay — A1) - (Bi1 + Bi)
o0 0 0 0 1 1 MT = (A1p — Ax) - (B + Bxp)
1 0 0 1 1 -1 0
1 0 1 1 -1 0 0 Ciu= M1+ M4 — M5+ M7
SRS
1 -1 0 0 0 1 1 o1 = Ve
1 - - Cp= M1 — M2+ M3+ M6
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Gradient: Jacobian:
f f f

Vi = [vec(((((;—lé\)T vec(((({;—B)T vec(g—c)T N J =1JaJp Jc]
where where
of
A —My)(CoB)+A(C'CxB'B) = —(CoOB)®I,

Substitutions and Derivations:
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1
min £(S,U, V., W) = 2| M~ [S5,5.5] = [U, V. W] — [W, U, V] - [V, W, U]

Gradient:
VF = vec( ) vec( o) vec(20)T vee( )"
S_Z: 3(S((STV) « (STW))+U((VTV) = (WTW))
FV((WTV) 5 (UTW)+ W((UTV) = (VT W) )
—Muy)(V O W) = M(W O V) = Ma(V © W)
Jacobian:

J = [Je Ju dy J] € RTXNRA3R

J=(Vow)e L+, - Wo V)l +M; - (Vo W),
T, JTd, JTd, ST, Tvee(G)
sty AL AL |t
NS IV, IV, T, | vec(G)
J! Jyvec(G,) = 3vec(G5(5T V) * (STW) + S((G W) * (STV) + (G V) * (ST W)))
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Findings so far:

./\/lz Rank 7
Rs=4 Rc=1
Rs=1, Rc=2

Mg Rank 23
Rs=11, Rc=4
Rs=5, Rc=6
Rs=2, Rc=7
Table: Exact Solutions through Cyclic Invariant CPDGN

M4 Rank 49
Rs=16, Rc=11
Rs=1, Rc=16

There is also evidence for numerical solution in Rs=8, Rc=5 for M3 Rank 23 as
well lower ranks. Additionally, there is evidence for several different Rs's for M,
Rank 49.

Future Work: Explore the possibility of numeric solutions in places named above,
as well as searching for lower ranks in My and bigger Matrix Multiplication Tensors.

1. Rouse, Kathryn Z., and Grey M. Ballard. “On the Efficiency of Algorithms for Tensor Decompositions and Their Applications.” Wake Forest University, 2018. Print.

2. G. Ballard, C. lkenmeyer, J. Landsberg and N. Ryder, The geometry of rank decompositions of matrix multiplication Il: 3x3 matrices, Journal of Pure and Applied
Algebra, Volume 223, Number 8, pp. 3205 - 3224, 2018.




