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Searching for Fast Matrix Multiplication Algorithms

Classical Matrix Multiplication:[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
=

[
C11 C12

C21 C22

]
AB = C ,O(n3), for A,B ∈ Rn×n

Fast algorithms pre-compute sums and differences of inputs and then use the
distributive property of multiplication followed by more sums to carefully cancel
terms [1]. Strassen’s 1969 algorithm is perhaps the best example, which has a
computational cost of O(nlog27) ≈ O(n2.81).

Constructing a Matrix Multiplication Tensor

Matrix Multiplication as a Tensor Operation:

M×1 vec(A)×2 vec(B) = M×1


A11

A12

A21

A22

×2


B11

B12

B21

B22

 =


C11

C21

C12

C22

 = vec(CT)

M1 =


1

1

 M2 =

 1
1

 M3 =


1

1

 M4 =

 1
1


For Example:

M3 ×1


A11

A12

A21

A22

×2


B11

B12

B21

B22

 = [A11 A12 A21 A22]


0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0



B11

B12

B21

B22

 = A11B12 + A12B22 = C12

Strassen’s Algorithm as Factor Matrices of a KTensor:

A =


1 0 0 0 1 1 −1
0 1 0 0 0 0 1
0 0 0 1 1 0 0
1 1 1 −1 0 0 0



B =


1 1 −1 0 0 0 1
0 0 1 1 0 0 0
0 0 0 0 0 1 1
1 0 0 1 1 −1 0



C =


1 0 1 1 −1 0 0
0 0 0 0 1 1 0
0 1 1 0 0 0 0
1 −1 0 0 0 1 1



M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11

M3 = A11 · (B11 − B22)

M4 = A22 · (B21 − B11)

M5 = (A11 + A12) · B22

M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 +M4−M5 +M7

C12 = M3 +M5

C21 = M2 +M4

C22 = M1−M2 +M3 +M6

Classic CPDGN Decomposition

M =
∑R

r=1Ar ◦ Br ◦ Cr

min f (A,B ,C ) =
1

2
∥M− [A,B ,C ]∥2

Gradient:

∇f = [vec(
∂f

∂A
)T vec(

∂f

∂B
)T vec(

∂f

∂C
)T ]T

where
∂f

∂A
= −M(1)(C ⊙B)+A(CTC ∗BTB)

Jacobian:

J = [JA JB JC ]

where

JA = −(C ⊙ B)⊗ In

Modifying CPDGN to search for Cyclic Invariance

Substitutions and Derivations:

A =
[
S U V W

]
B =

[
S W U V

]
C =

[
S V W U

]

M =
∑Rs

q=1 Sq ◦ Sq ◦ Sq +
∑Rc

k=1(Uk ◦ Vk ◦Wk +Wk ◦ Uk ◦ Vk + Vk ◦Wk ◦ Uk)

min f (S ,U ,V ,W ) =
1

2
∥M− [S , S , S ]− [U ,V ,W ]− [W ,U ,V ]− [V ,W ,U ]∥2

Gradient:

∇f = [vec(
∂f

∂S
)T vec(

∂f

∂U
)T vec(

∂f

∂V
)T vec(

∂f

∂W
)T]T

∂f

∂U
= 3

(
S
(
(STV ) ∗ (STW )

)
+U

(
(V TV ) ∗ (W TW )

)
+V

(
(W TV ) ∗ (UTW )

)
+W

(
(UTV ) ∗ (V TW )

))
−M(1)(V ⊙W )−M(2)(W ⊙ V )−M(3)(V ⊙W )

Jacobian:
J =

[
Js Ju Jv Jw

]
∈ Rn3×n(Rs+3Rc)

Ju = (V ⊙W )⊗ In + ΠT
2 · (W ⊙ V )⊗ In + ΠT

3 · (V ⊙W )⊗ In

JTJ · vec(G ) =


JTs Js J

T
s Ju J

T
s Jv J

T
s Jw

JTu Js J
T
u Ju J

T
u Jv J

T
u Jw

JTv Js J
T
v Ju J

T
v Jv J

T
v Jw

JTwJs J
T
wJu J

T
wJv J

T
wJw



vec(Gs)
vec(Gu)
vec(Gv)
vec(Gw)


JTu Jsvec(Gs) = 3vec

(
Gs(S

TV ) ∗ (STW ) + S
(
(GT

s W ) ∗ (STV ) + (GT
s V ) ∗ (STW )

))
Preliminary Results

Findings so far:

M2 Rank 7 M3 Rank 23 M4 Rank 49
Rs=4, Rc=1 Rs=11, Rc=4 Rs=16, Rc=11
Rs=1, Rc=2 Rs=5, Rc=6 Rs=1, Rc=16

Rs=2, Rc=7
Table: Exact Solutions through Cyclic Invariant CPDGN

There is also evidence for numerical solution in Rs=8, Rc=5 for M3 Rank 23 as
well lower ranks. Additionally, there is evidence for several different Rs’s for M4

Rank 49.
Future Work: Explore the possibility of numeric solutions in places named above,
as well as searching for lower ranks in M4 and bigger Matrix Multiplication Tensors.
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