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Given matrices A, B € R"™" their matrix product C € R"" is \c/:VPe c(I:an use c¥f_lic inv?'::ntc& irIlTour favoq:htotsea;ch for We can thus reduce the number of search parameters by 3 by substituting regular CP-Decomposition of factor matrices (A, B, C),
-decompositions of MatMulTensors with structure: : : : : : :
[A11 A12] [Bn 312] _ [A11311 + A1pBy1 AuiBir + A12522] _ [Cn C12] mﬁ?‘imiililsrgczﬂscr;z::‘es (5, U, V. W) and substitute all opera;clons accordingly
An Ax| B Bz AnBu + AnBa A B+ Anb Car G Some algorithms, like Strassen’s, are cyclic invariant: ' min f(A, B, C) = 5 M —[A, B, C]|J?
g:st Ma”crlx Multiply .algorlthms attgmpt to create a recursive algorithm that decreases the number of multiplications performed. M, My, Ms My My Mg M, ) ,
rassen’s 1969 algorithm was the first of such group. A1 0 0 0 1 1 1 n \L,
’ . Apb/ 0 1 0 0 0 0 1 1
' classical ' Strassen’s Algorlthm A21 0 0 0 1 1 0 0 min f(57 U7 V7 W) — _HM o [[57 57 S]] o [[Uv Va W]] o [[Wv U) V]] o [[V7 W7 U]] H2
3 — — — — — = —— — — — — — — O ?
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M, = (A + Ax) - By 11 N > T of of 1 of 1 of
28] N B VF = [vec(=—)" vec(==)" vec(==)"|" _ T T
: Sl M; = Ay - (Bi — Bu) B 00 L1000 " OA" 0BT oC V= lvec(5g)" vee(y ) vee(y)' veelgy)]
gzj M, = A B B 821 0 0 0 0 0 1 1
1 = A (B = Bu) Bp 1 0 0 1 1 —1 0 o M(CoB) L ACTC*BTB of
S Ms = (Au+ Aw) - B Chill 0 1 1 10 0 oA = MolCoB)TACCEE) - — au 3(S((STV) « (STW))+U((VTV) « (WTW))
& o N N Ms = (A2 — A1) - (Bu1 + Bio) C«l0 0 0 0 1 1 0 of T T
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22 Cp/1 -1 0 0 0 1 1 54 = ~My(BoA)+ C(BTB*ATA) ~Mo)(V o W) = Ma)(W o V) = Ma)(V o W)
. Ci1 = My + My — Ms + My, . . . . Jacobi
| , , , , , . C12 — M3—|—M5 S C C C daCoDian. S
21960 1970 1980 1990 2000 2010 2020 C21 — M3—|— M4 R = Rs + 3Rc J = [JA JB JC] c R,,3><nR) J = [Js Ju Jv Jw] cR (Rs+3R¢)
vears Cor = My — My+ Ms + M Then our Tensor Decomposition becomes:
Figure: Matrix Multiply . y y Jy =—(CoB)®I — J =(SoS)eL+M - (SeoS)el,+N-(S @5)®l
Exponents Through Time . 1 / e Jp =-NJ-(CoA®I) J=(VoW)® L +N-(We V)®L+Nl- (Vo W)e
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e 4 SRs 4 Wi T Whe Applying (J7J + Al) to vectorized input
Matrix Multiplication can be represented by tensors: JXJA + A JXJB JXJC vec(Ka)
(ST T+ -vec(K) = | JEda  JEda4+ XN SR vec(Kp)
1 0 0 O 0 0 0 0O | Jeda Il JEde+ A [vec(Ke).
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Solutions We have found so far
Tensors can be decomposed into a sum of outer products: > 2 by 2 _ Rank 7
C C
/ 1 / " " ” » (Rs =4, Rc = 1)
1 Rc
| | | | . » 3 by 3 - Rank 23
— — R
B B _ _
S e e o | ORI ESOREE I - (1. %0
M =1 Quter Products K Tensor » (Rs = 8. Rc = 5) - Evidence for border rank solution
Below is the generic algorithm, the input K is the vectorized version of whatever type of CP-Decomposition we wish to perform. > ( s — 5 Re — 6)
a a K = [A, B, C] if we are performing regular CP-Decomposition, but K = {S, U, V, W} if we are performing the Cyclic Invariant > = €=
A, A variation. > (QS = 2, Rc = 7)
Data: Matrix Multiply Tensor X > 4 by 4 - Rank 49
Initialize K randomly or through input arguments » (Rs — 16. Rc = 11
Since rank (number of columns) represent the number of multiplications, fewer outer products translate to faster Require: Damping Parameter A € R, ( S = , RC = )
algorithms: Maximum Iterations MaxlIters € Z, > (RS - ]., Rc = 26)
Convergence Tolerance € € R; _
Result: Decomposition K > 5 by 5 Rank 99 _ _
for i = 1, ... , Mazlters do » (Rs = 18, Rc = 27) - Evidence for border rank solution
> 2 by 2 > 4 by 4 F_old = +— Compute Function Value VF <— Compute Gradient of Function Future Work
: o utu
_ . . _ 3 _ . : _ 3 M «+— Solution to (J*J + A\)K = —VF
> Rank8: Classic A’\Igorlthr_n. O(n°) > Rank 64: Classic Algorithm: O.(n ) while Goldstein Conditions Are Satisfied do » Only began decomposing MatMul 5 recently, so there is more to explore
» Rank 7: Strassen’s Algorithm: » Rank 48: Recurse Strassen Twice: K = Kprev +g M > Exol e bt ! e L s
F_new = +— Compute Function Value xXplore new auxiiiary tunctions d €nalize searc ased on Inpu euristic
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