
Searching for Cyclic-Invariant Fast Matrix Multiplication Algorithms
João Pinheiro, Grey Ballard, Frank Moore

Department of Computer Science

Matrix Multiplication Algorithms

Given matrices A,B ∈ Rn×n their matrix product C ∈ Rn×n is:[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
=

[
C11 C12

C21 C22

]
Fast Matrix Multiply algorithms attempt to create a recursive algorithm that decreases the number of multiplications performed.
Strassen’s 1969 algorithm was the first of such group.

1960 1970 1980 1990 2000 2010 2020

Years

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

M
at

M
ul

 E
xp

on
en

t A
lg

or
ith

m

classical

Strassen

Schonhage

Coppersmith-Winograd Williams/Le Gall Williams

Strassen

Bini et al.

Figure: Matrix Multiply
Exponents Through Time

Strassen’s Algorithm

M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11

M3 = A11 · (B12 − B22)

M4 = A22 · (B21 − B11)

M5 = (A11 + A12) · B22

M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 +M4 −M5 +M7

C12 = M3 +M5

C21 = M3 +M4

C22 = M1 −M2 +M3 +M6

Matrix Multiplication as Tensors

Matrix Multiplication can be represented by tensors:

M

A B

=

CT

M1 =


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 M2 =


0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0



M3 =


0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 M4 =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1



M×1 vec(A)×2 vec(B) = M×1


A11

A12

A21

A22

×2


B11

B12

B21

B22

 =


C11

C21

C12

C22

 = vec(CT)

CP-Decomposition of Tensors

Tensors can be decomposed into a sum of outer products:

M

=

A1

B1

C1

+ · · · +

AR

BR

CR

=
R∑
i=1

Ai ◦ Bi ◦ Ci︸ ︷︷ ︸
Outer Products

= JA,B ,C K︸ ︷︷ ︸
K Tensor

Since rank (number of columns) represent the number of multiplications, fewer outer products translate to faster
algorithms:

▶ 2 by 2
▶ Rank 8: Classic Algorithm: O(n3)
▶ Rank 7: Strassen’s Algorithm:

O(nlog227) ≈ O(n2.81)
▶ Rank 6: Proven to be impossible

▶ 3 by 3
▶ Rank 27: Classic Algorithm: O(n3)
▶ Rank 23: Current Best Algorithm:

O(nlog323) ≈ O(n2.85)
▶ No proven lower bound

▶ 4 by 4
▶ Rank 64: Classic Algorithm: O(n3)
▶ Rank 48: Recurse Strassen Twice:

O(nlog448) ≈ O(n2.80)
▶ No proven lower bound

▶ 5 by 5
▶ Rank 125: Classic Algorithm: O(n3)
▶ Rank 97: Flipgraph Algorithm:

O(nlog597) ≈ O(n2.84)
▶ No proven lower bound

Cyclic Invariance in Matrix Multiplication

Some algorithms, like Strassen’s, are cyclic invariant:

M1 M2 M3 M4 M5 M6 M7

A11 1 0 0 0 1 1 −1
A12 0 1 0 0 0 0 1
A21 0 0 0 1 1 0 0
A22 1 1 1 −1 0 0 0
B11 1 1 −1 0 0 0 1
B12 0 0 1 1 0 0 0
B21 0 0 0 0 0 1 1
B22 1 0 0 1 1 −1 0
C11 1 0 1 1 −1 0 0
C21 0 0 0 0 1 1 0
C12 0 1 1 0 0 0 0
C22 1 −1 0 0 0 1 1

We can use cyclic invariance in our favour to search for
CP-decompositions of MatMulTensors with structure:

SB W U V n2

SA U V W n2

SC

Rs

V

Rc

W

Rc

R = Rs + 3Rc

U

Rc

n2

Then our Tensor Decomposition becomes:

S1

S1

S1

+ · · · +

SRs

SRs

SRs

+

U1

W1

V1

+ · · · +

URc

WRc

VRc

+

V1

U1

W1

+ · · · +

VRc

URc

WRc

+

W1

V1

U1

+ · · · +

WRc

VRc

URc

Cyclic Invariant CP-Decomposition via Damped Gauss-Newton Optimization

Below is the generic algorithm, the input K is the vectorized version of whatever type of CP-Decomposition we wish to perform.
K = JA,B ,C K if we are performing regular CP-Decomposition, but K = {S ,U ,V ,W } if we are performing the Cyclic Invariant
variation.

Data: Matrix Multiply Tensor X
Initialize K randomly or through input arguments

Require: Damping Parameter � 2 R,
Maximum Iterations MaxIters 2 Z,
Convergence Tolerance ✏ 2 R;

Result: Decomposition K
for i = 1, ... , MaxIters do

F old = � Compute Function Value rF � Compute Gradient of Function
M � Solution to (JTJ + �I)K = �rF
while Goldstein Conditions Are Satisfied do

K = Kprev + ↵ M
F new = � Compute Function Value
↵ = ↵/2

end
if F old - F new < ✏ then

break
end

end
Algorithm 1: Damped Gauss-Newton

1

Figure: Generic Damped Gauss-Newton Algorithm

Modifying CP-DGN Algorithm

We can thus reduce the number of search parameters by 3 by substituting regular CP-Decomposition of factor matrices (A, B, C),
with smaller cyclic matrices (S, U, V, W) and substitute all operations accordingly.
Minimizing Functions:

min f (A,B ,C) =
1

2
∥M− JA,B ,C K ∥2

⇓
min f (S ,U ,V ,W) =

1

2
∥M− JS , S , SK − JU ,V ,W K − JW ,U ,V K − JV ,W ,UK ∥2

Gradient:

∇f = [vec(
∂f

∂A
)T vec(

∂f

∂B
)T vec(

∂f

∂C
)T]T

∂f

∂A
= −M(1)(C ◦ B) + A(CTC ∗ BTB)

∂f

∂A
= −M(2)(C ◦ A) + B(CTB ∗ ATA)

∂f

∂A
= −M(3)(B ◦ A) + C (BTB ∗ ATA)

⇒
∇f = [vec(

∂f

∂S
)T vec(

∂f

∂U
)T vec(

∂f

∂V
)T vec(

∂f

∂W
)T]T

∂f

∂U
= 3

(
S
(
(STV) ∗ (STW)

)
+U

(
(V TV) ∗ (W TW)

)
+V

(
(W TV) ∗ (UTW)

)
+W

(
(UTV) ∗ (V TW)

))
−M(1)(V ◦W)−M(2)(W ◦ V)−M(3)(V ◦W)

Jacobian:

J =
[
JA JB JC

]
∈ Rn3×nR)

JA = −(C ⊙ B)⊗ I

JB = −Π⊺
2 · ((C ⊙ A)⊗ I)

JC = −Π⊺
3 · ((B ⊙ A)⊗ I)

⇒
J =

[
Js Ju Jv Jw

]
∈ Rn3×n(Rs+3Rc)

Js = (S ⊙ S)⊗ In + Π⊺
2 · (S ⊙ S)⊗ In + Π⊺

3 · (S ⊙ S)⊗ In
Ju = (V ⊙W)⊗ In + Π⊺

2 · (W ⊙ V)⊗ In + Π⊺
3 · (V ⊙W)⊗ In

Jv = (W ⊙ U)⊗ In + Π⊺
2 · (U ⊙W)⊗ In + Π⊺

3 · (W ⊙ U)⊗ In
Jw = (U ⊙ V)⊗ In + Π⊺

2 · (V ⊙ U)⊗ In + Π⊺
3 · (U ⊙ V)⊗ In

Applying (JTJ + λI) to vectorized input

(JTJ + λI) · vec(K) =

JTAJA + λ JTAJB JTAJC
JTBJA JTBJA + λ JTBJC
JTC JA JTC Ju JTC JC + λ

vec(KA)
vec(KB)
vec(KC)


JTBJAvec(Ks) = vec

(
B(KT

AA ∗ CTC)
)

⇓

(JTJ + λI) · vec(K) =


JTs Js + λ JTs Ju JTs Jv JTs Jw
JTu Js JTu Ju + λ JTu Jv JTu Jw
JTv Js JTv Ju JTv Jv + λ JTv Jw
JTwJs JTwJu JTwJv JTwJw + λ



vec(Ks)
vec(Ku)
vec(Kv)
vec(Kw)


JTu Jsvec(Ks) = 3vec

(
Ks(S

TV) ∗ (STW) + S
(
(KT

s W) ∗ (STV) + (KT
s V) ∗ (STW)

))

Results

Solutions We have found so far

▶ 2 by 2 - Rank 7
▶ (Rs = 4, Rc = 1)

▶ 3 by 3 - Rank 23
▶ (Rs = 11, Rc = 4)
▶ (Rs = 8. Rc = 5) - Evidence for border rank solution
▶ (Rs = 5, Rc = 6)
▶ (Rs = 2, Rc = 7)

▶ 4 by 4 - Rank 49
▶ (Rs = 16, Rc = 11)
▶ (Rs = 1, Rc = 26)

▶ 5 by 5 - Rank 99
▶ (Rs = 18, Rc = 27) - Evidence for border rank solution

Future Work

▶ Only began decomposing MatMul 5 recently, so there is more to explore

▶ Explore new auxiliary functions that penalize search based on input heuristic

References & Github Repository

1. Rouse, Kathryn Z., and Grey M. Ballard. “On the Efficiency of Algorithms for Tensor Decompositions and Their Applications.”
Wake Forest University, 2018. Print.

2. G. Ballard, C. Ikenmeyer, J. Landsberg and N. Ryder, The geometry of rank decompositions of matrix multiplication II: 3x3
matrices, Journal of Pure and Applied Algebra, Volume 223, Number 8, pp. 3205 - 3224, 2018.

3. https://github.com/Jv7Pinheiro/FastMatrixMultiplyAlgorithmsSearch

