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Matrix Multiplication Algorithms

Given matrices A,B ∈ Rn×n their matrix product C ∈ Rn×n is:[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
=

[
C11 C12

C21 C22

]
Fast Matrix Multiply algorithms attempt to create a recursive algorithm that decreases the number of multiplications performed.
Strassen’s 1969 algorithm was the first of such group.
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Figure: Matrix Multiply
Exponents Through Time

Strassen’s Algorithm

M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11

M3 = A11 · (B12 − B22)

M4 = A22 · (B21 − B11)

M5 = (A11 + A12) · B22

M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 +M4 −M5 +M7

C12 = M3 +M5

C21 = M3 +M4

C22 = M1 −M2 +M3 +M6

Matrix Multiplication as Tensors

Matrix Multiplication can be represented by tensors:

M

A B

=

CT

M1 =


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 M2 =


0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0



M3 =


0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 M4 =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1



M×1 vec(A)×2 vec(B) = M×1


A11

A12

A21

A22

×2


B11

B12

B21

B22

 =


C11

C21

C12

C22

 = vec(CT)

CP-Decomposition of Tensors

Tensors can be decomposed into a sum of outer products:

M

=

A1

B1

C1

+ · · · +

AR

BR

CR

=
R∑
i=1

Ai ◦ Bi ◦ Ci︸ ︷︷ ︸
Outer Products

= JA,B ,C K︸ ︷︷ ︸
K Tensor

Since rank (number of columns) represent the number of multiplications, fewer outer products translate to faster
algorithms:

▶ 2 by 2
▶ Rank 8: Classic Algorithm: O(n3)
▶ Rank 7: Strassen’s Algorithm:

O(nlog227) ≈ O(n2.81)
▶ Rank 6: Proven to be impossible

▶ 3 by 3
▶ Rank 27: Classic Algorithm: O(n3)
▶ Rank 23: Current Best Algorithm:

O(nlog323) ≈ O(n2.85)
▶ No proven lower bound

▶ 4 by 4
▶ Rank 64: Classic Algorithm: O(n3)
▶ Rank 48: Recurse Strassen Twice:

O(nlog448) ≈ O(n2.80)
▶ No proven lower bound

▶ 5 by 5
▶ Rank 125: Classic Algorithm: O(n3)
▶ Rank 97: Flipgraph Algorithm:

O(nlog597) ≈ O(n2.84)
▶ No proven lower bound

Cyclic Invariance in Matrix Multiplication

Some algorithms, like Strassen’s, are cyclic invariant:

M1 M2 M3 M4 M5 M6 M7

A11 1 0 0 0 1 1 −1
A12 0 1 0 0 0 0 1
A21 0 0 0 1 1 0 0
A22 1 1 1 −1 0 0 0
B11 1 1 −1 0 0 0 1
B12 0 0 1 1 0 0 0
B21 0 0 0 0 0 1 1
B22 1 0 0 1 1 −1 0
C11 1 0 1 1 −1 0 0
C21 0 0 0 0 1 1 0
C12 0 1 1 0 0 0 0
C22 1 −1 0 0 0 1 1

We can use cyclic invariance in our favour to search for
CP-decompositions of MatMulTensors with structure:

SB W U V n2

SA U V W n2

SC

Rs

V

Rc

W

Rc

R = Rs + 3Rc

U

Rc

n2

Then our Tensor Decomposition becomes:

S1

S1

S1

+ · · · +

SRs

SRs

SRs

+

U1

W1

V1

+ · · · +

URc

WRc

VRc

+

V1

U1

W1

+ · · · +

VRc

URc

WRc

+

W1

V1

U1

+ · · · +

WRc

VRc

URc

Cyclic Invariant CP-Decomposition via Damped Gauss-Newton Optimization

Below is the generic algorithm, the input K is the vectorized version of whatever type of CP-Decomposition we wish to perform.
K = JA,B ,C K if we are performing regular CP-Decomposition, but K = {S ,U ,V ,W } if we are performing the Cyclic Invariant
variation.

Data: Matrix Multiply Tensor X
Initialize K randomly or through input arguments

Require: Damping Parameter � 2 R,
Maximum Iterations MaxIters 2 Z,
Convergence Tolerance ✏ 2 R;

Result: Decomposition K
for i = 1, ... , MaxIters do

F old =  � Compute Function Value rF � Compute Gradient of Function
M  � Solution to (JTJ + �I)K = �rF
while Goldstein Conditions Are Satisfied do

K = Kprev + ↵ M
F new =  � Compute Function Value
↵ = ↵/2

end
if F old - F new < ✏ then

break
end

end
Algorithm 1: Damped Gauss-Newton

1

Figure: Generic Damped Gauss-Newton Algorithm

Modifying CP-DGN Algorithm

We can thus reduce the number of search parameters by 3 by substituting regular CP-Decomposition of factor matrices (A, B, C),
with smaller cyclic matrices (S, U, V, W) and substitute all operations accordingly.
Minimizing Functions:

min f (A,B ,C ) =
1

2
∥M− JA,B ,C K ∥2

⇓
min f (S ,U ,V ,W ) =

1

2
∥M− JS , S , SK − JU ,V ,W K − JW ,U ,V K − JV ,W ,UK ∥2

Gradient:

∇f = [vec(
∂f

∂A
)T vec(

∂f

∂B
)T vec(

∂f

∂C
)T ]T

∂f

∂A
= −M(1)(C ◦ B) + A(CTC ∗ BTB)

∂f

∂A
= −M(2)(C ◦ A) + B(CTB ∗ ATA)

∂f

∂A
= −M(3)(B ◦ A) + C (BTB ∗ ATA)

⇒
∇f = [vec(

∂f

∂S
)T vec(

∂f

∂U
)T vec(

∂f

∂V
)T vec(

∂f

∂W
)T]T

∂f

∂U
= 3

(
S
(
(STV ) ∗ (STW )

)
+U

(
(V TV ) ∗ (W TW )

)
+V

(
(W TV ) ∗ (UTW )

)
+W

(
(UTV ) ∗ (V TW )

))
−M(1)(V ◦W )−M(2)(W ◦ V )−M(3)(V ◦W )

Jacobian:

J =
[
JA JB JC

]
∈ Rn3×nR)

JA = −(C ⊙ B)⊗ I

JB = −Π⊺
2 · ((C ⊙ A)⊗ I )

JC = −Π⊺
3 · ((B ⊙ A)⊗ I )

⇒
J =

[
Js Ju Jv Jw

]
∈ Rn3×n(Rs+3Rc)

Js = (S ⊙ S)⊗ In + Π⊺
2 · (S ⊙ S)⊗ In + Π⊺

3 · (S ⊙ S)⊗ In
Ju = (V ⊙W )⊗ In + Π⊺

2 · (W ⊙ V )⊗ In + Π⊺
3 · (V ⊙W )⊗ In

Jv = (W ⊙ U)⊗ In + Π⊺
2 · (U ⊙W )⊗ In + Π⊺

3 · (W ⊙ U)⊗ In
Jw = (U ⊙ V )⊗ In + Π⊺

2 · (V ⊙ U)⊗ In + Π⊺
3 · (U ⊙ V )⊗ In

Applying (JTJ + λI) to vectorized input

(JTJ + λI ) · vec(K ) =

JTAJA + λ JTAJB JTAJC
JTBJA JTBJA + λ JTBJC
JTC JA JTC Ju JTC JC + λ

vec(KA)
vec(KB)
vec(KC)


JTBJAvec(Ks) = vec

(
B(KT

AA ∗ CTC )
)

⇓

(JTJ + λI ) · vec(K ) =


JTs Js + λ JTs Ju JTs Jv JTs Jw
JTu Js JTu Ju + λ JTu Jv JTu Jw
JTv Js JTv Ju JTv Jv + λ JTv Jw
JTwJs JTwJu JTwJv JTwJw + λ



vec(Ks)
vec(Ku)
vec(Kv)
vec(Kw)


JTu Jsvec(Ks) = 3vec

(
Ks(S

TV ) ∗ (STW ) + S
(
(KT

s W ) ∗ (STV ) + (KT
s V ) ∗ (STW )

))

Results

Solutions We have found so far

▶ 2 by 2 - Rank 7
▶ (Rs = 4, Rc = 1)

▶ 3 by 3 - Rank 23
▶ (Rs = 11, Rc = 4)
▶ (Rs = 8. Rc = 5) - Evidence for border rank solution
▶ (Rs = 5, Rc = 6)
▶ (Rs = 2, Rc = 7)

▶ 4 by 4 - Rank 49
▶ (Rs = 16, Rc = 11)
▶ (Rs = 1, Rc = 26)

▶ 5 by 5 - Rank 99
▶ (Rs = 18, Rc = 27) - Evidence for border rank solution

Future Work

▶ Only began decomposing MatMul 5 recently, so there is more to explore

▶ Explore new auxiliary functions that penalize search based on input heuristic
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